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Long Wavelength Array (LWA):
Phase Calibration Challenges and
Opportunities for lonospheric Investigations

Lightning-lonosphere Coupling Workshop
20 - 21 August 2008

Larry P Cox [LANL]
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Outline

e LWA Overview

* Basic ionospheric effects

* Phase calibration challenges

* Potential calibration sources

e Accuracy of GPS-derived TEC measurements
* Mid-latitude ionospheric structures

* An-elastic, viscous GW dispersion relation [Vadas 2008 CEDAR Prize Lecture]
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Long Wavelength Array Design Concept
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LWDA

LWDA - the Long Wavelength Demonstrator Array —The 16 dipole
elements of the LWDA are seen in the foreground. In the gap between
them (slightly right of center) 1s the Fork antenna (white post: the wires are
not visible) and behind them to the left are the Big Blade antennas (with the
people next to them). VLA antennas (white) are in the distance. The

LWDA
algoritk
e An_tan na
Candidates
- Los Alamos “Big Blade” Fork
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LWA Specifications

Frequency Range

Effective Collecting Area
Number of Dipole Elements
Number of Dipole Stations
Baseline Range
Point-Source Sensitivity
(2 polarizations, 1 hour, 4 MHz BEW)

Angular Resolution

Field of View

Number of Independent FOV (beams)
Maximum Observable Bandwidth
Spectral Resolution

Image Dynamic Range

Digrized Bandwidth
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" 10— 88 MHz

(20— 80 MHz optimized)
108 (20 MHz/v)2m2

~ 10*

~ 50

0.1-400 km

1.0 mJy @ 20 MHz
0.5 mJy @ 80 MHz
15" @ 10 MHz

5" @ 30 MHz

2" @ 80 MHz
~2° (@ 80 MHz (=C 1)
>4

32 MHz

=1KHz

=104

Full RF
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Other low-frequency instruments in development
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Low-frequency radio astronomy

e Avirtually unexplored field

* Atlow frequencies phase distortions due to the ionosphere are a significant
problem in achieving high quality images

* Classical self-calibration will not work properly for large (>100km), low-
frequency arrays

* Existing low-frequency arrays have larger field of view (FOV), inside which
phase distortions show a gradient or even curvature
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Basic ionospheric effects

* Phase rotation by free electrons increases linearly with decreasing frequency
and increasing TEC

op=2844x1 0’ f’ (TEC) radians = 0.8 radians for 1 mTECU @ 10 MHz

* Turbulence and traveling acoustic waves cause the phase rotation to be
variable in space and time; coherency timescales ~ 10’s of seconds to a
minute

* |soplanatic patch: name given to the area of the sky over which wavefront
errors are closely correlated (roughly angular measure of turbulent cell)

very roughly 6=r,/D

* lonospheric scintillation; time coherency < seconds.
Coherency lost, array not calibratable.
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Phase distortion challenges for LWA radio astronomy

* Widely separated stations ‘see’ entirely different regions of the ionosphere with
different turbulence

* Kolmogorov turbulence and traveling acoustic waves cause the phase rotation to be
variable in space and time; coherency timescales ~ 10’s of seconds to a minute

e Curvature in the ionosphere for large diameter arrays causes sources to be deformed;
in extreme cases a source breaks up into multiple components and coherency is lost

* Low-frequency arrays have a larger FOV for each station inside which the phase
distortions have a gradient or even curvature

* Since the ionosphere changes rapidly a phase correction is needed for each integration
* Sources bright enough to be visible in one integration are needed

* Adelicate balance between the timescale of rapid ionospheric phase rotations and the
time to reach adequate S/N for enough calibrators to achieve a good phase screen fit

* Techniques to incorporate time coherency in phase calibration approaches is needed
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Refraction: Troposphere vs lonosphere
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shading shows relative index of refraction; lines show effects on apparent source direction

« relatively independent apparent deflections e each element of array looks through nearly
of source positions between antennas the same portion of the ionosphere toward

* phase screen close to antennas a given source, but the portion of the

* large area of sky viewed through same  ionosphere varies between sources
portion of phase screen * jonospheric errors not well described
by a single phase per antenna, but by a

> Los Alamos phase screen across the array
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Calibration sources

The ionosphere changes rapidly (1 minute), therefore a phase correction is needed for
each integration.

Therefore radio sources bright enough to be visible in one integration are needed.

The calibrators provide a collection of points projected on the ionosphere if we assume a
thin layer ionosphere.

For the first iteration there is a delicate balance between the timescale of rapid ionospheric
phase rotations and the time needed to reach adequate S/N for enough calibrators to
achieve a good fit.

Field-based calibration uses low-order Zernike polynomials as the set of orthogonal basis
functions to fit the phase screen.

For the VLA at 74 MHz there are seldom enough detectable calibrators to justify more than
a 5 term Zernike polynomial.
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Potential calibration sources

* Bright compact radio sources
(from NVSS catalog at very different frequency and resolution)

e GPS satellites

o Satellites transmitters:
— Orbcom constellation with 29 LEO communication satellites
transmitting at 137.5 - 138 MHz
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Accuracy of GPS-based TEC measurements

How accurate are absolute GPS-based TEC measurements?

How accurate are short baseline GPS-based relative TEC
measurements?

What are the accuracy limitations for GPS-based TEC measurements?
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Comparison of Magic (USTEC) and FORTE TEC measurements

CORS Coverage - February 2007 Amplitnde of the Feceived Simal
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Figure 5. Moving-window spectrogram of a pulse recording by the FORTE satellite,

Minter et al, Radio Science (2007) U of Colorado, NOAA, LANL
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Comparison of Magic (USTEC) and FORTE TEC measurements

Table 2. Root-Mean-Square Error Calculations According to Elevation Angle Cutoff, TEC Cutoff, and Number of Stations

Average Number Average Number of
Average Number of of CORS Sttions CORS Stations Elevation Elevation Angles >
CORS Stations in the Within 500 km of Within 1000 km of All Data* Angles > Data < 60 557 and Data < 60
Magic Solution Los Alamos Los Alamos TECU 55°° TECU.* TECU ¢

133 7 32 270 1.68 1.7 L.15

105 5 24 275 169 1.73 1.24

3 5 17 217 1.76 2.13 1.52

60 4 12 287 1.88 2.32 1.66

4 3 9 302 1.9 2.60 1.78

21 1 3 422 274 3.9 2.44

*Calaulations used 178 FORTE observations.
"Calculations used 36 FORTE observations.
“Calculations used 84 FORTE observations.
“Calculations used 28 FORTE observations.

How much FORTE and Magic individually contribute to this error remains indeterminable,
however the errors are expected to be unique to either system and uncorrelated.

Performance during storm conditions is unknown.

Minter et al, Radio Science (2007) U of Colorado, NOAA, LANL
Araujo-Pradere et al, Radio Science (2007) U of Colorado, NOAA
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Short Baseline Relative TEC Measurements

e Two LANL NovaTel 4004B GPS receivers to be deployed starting 7/25

e Goal: To replicate short baseline relative TEC measurements reported by Skone and
and Nicholson at ION GNSS 2006

e Two LANL NovaTel 4004B GPS receivers to be deployed starting 7/30 with 10 m baseline
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Figure 5. Correlation coefficient (top) of TEC time My
series for PRN 1 observed at NRC1 and NRC3 Figure 15. Correlation coefficient (top) for PRN 15
{bottom) during period of Pc 3 pulsation activity. and PRN 21 TEC series (bottom) on 30 April 2006.
Skone & Nicholson (2006 ' iti
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Factors Limiting TEC Measurement Accuracy

o GPS is primarily a navigational system
-> The majority of GPS receivers are not optimized for ionospheric studies

e Introduced biases in determining TEC from a combination of

absolute code derived TEC and carrier phase derived TEC:
- Delay of pseudorange TEC as a result of code smoothing (Hatch filter)
- Estimation rather than measurement of receiver differential code bias (DCB)
- lonospheric divergence of pseudorange TEC resulting from code smoothing

e More fundamentally, observed patterns of intersatellite interference between
C/A codes as a function of time-varying differential Doppler shift have recently
been reported [Beach and Baragona, Radio Science, 2007]

e In discussions with Ted Beach this summer quantitative assessments of
the impact of intersatellite interference on TEC measurement accuracy await
detailed GPS simulator investigation
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Nongeophysical GPS amplitude fluctuations due to intersatellite interference
[Beach and Baragona, 2007]
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What are the dominant ionospheric structures for mid-latitude?

o TID observations in New Mexico:

— Jacobson et al, JGR (1995)
Observations of TIDs with a satellite-beacon radio interferometer
Found bi-modal azimuth distribution of TIDs

— Jacobson and Erickson, Planetary and Space Science (1992)
Wavenumber-resolved observations of ionospheric waves using the VLA

— Dymond et al, presented at lonopheric Effects Symposium (2008)
The Combined Radio Interferometry and COSMIC Experiment in Tomography
(CRICKET) Campaign

 Mid-latitude turbulent upwelling:

e Fukao and Kelley, JGR (1991)
Turbulent Upwelling of the Mid-latitude lonosphere
1. Observational results by the MU radar
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Mid-latitude ionospheric structures

The Combined Radio Interferometry and COSMIC Experiment in Tomography (CRICKET)
was proposed to use VLA in conjunction with the COSMIC satellite constellation

» Following Jacobson and Erickson, The two strong plane waves
we fit VLA phases assuming a plane were detected
wave model solution » Speeds and periods consistent
» A. R. Jacobson and W. C. Erickson, with Acoustic Gravity Waves and
Astron. Astrophys., 257, 401-409 MSTIDs
(1992) Wave 1:
* FFT the phase progression in the Period = 18.6 + 6.3 min
time domain Wavelength = 271 + 16 km

* Fit phases for the antennas at each Speed = 246 + 85 m/s
temporal frequency with a plane
wave model

+ At each frequency we retrieved:

Azimuth = 222° (CW N through

— Amplitude

— Wavelength Period = 14.1 £ 3.5 min

— Direction of travel (Azimuth) Wavelength = 242 + 13 km

— Phase speed Speed =286+ 73 m/s
Y. N - Azimuth = 209° (CW N through
Df = D] cos(Q,(r—1,)—k,oX+¢,) E)

The “hat” denotes the FFT'd phase
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ASTRA TIDDBIT HF Doppler sounder (MSTID observations)
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Mid-latitude turbulent upwelling structures
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MU Radar System Parameters
Location: Shigaraki, Shiga, Japan

Geomagnetic coordinates:
Declination = 5.7° (300 km)
Dip angle = 48.3° (IGRF 1985)
Dip latitude =29.3° (IGRF 1985)

Operational freq = 46.5 MHz

Peak power =1 MW max
Pulse length = 1-512 us
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Anelastic, viscous GW dispersion relation
[Sharon Vadas 2008 CEDAR Prize Lecture]

Question posed by Dave Fritts in 2002:
Can we show via modeling that gravity waves from convection with

the right scales and amplitudes are at the bottomside of the F region
when plasma instabilites are seeded?
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Anelastic, viscous GW dispersion relation
[Sharon Vadas 2008 CEDAR Prize Lecture]

» Gravity waves carry nearly ALL momentum flux and energy (from linear response)
away from typical lower-atmospheric disturbances

e For gravity waves with period less than one hour, thermospheric dissipation via
kinematic viscosity and thermal diffusivity are extremely important

o Earlier analytic dispersion relations (e.g., Pitteway and Hines) break down where
dissipation is strong

 Ray-tracing requires an analytic GW dispersion relation taking into account
thermospheric dissipation
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Anelastic, viscous GW dispersion relation
[Sharon Vadas’ 2008 CEDAR Prize Lecture]

_ 2 N2 2 . 2 (1 _ pe—1y27-1
m? = — qu — 1+ L (kz — 1, ) (:1 1?1 ). — k% — .
wi. (1404 + 0%/ Pr) w3, 4H%) (14 6,/2)?

k = (k.Im), ki=k+1%, wir=w—kU =1V
0 = vm/Hw;,, 0,=0(1+1/Pr), v, =v(1+1/Pr)

Includes thermospheric dissipation via kinematic viscosity and themal diffusivity

When T, U, V are constant, and P, = 1, there is an exact solution
mu\ 2 kéN 2
Wy +——) = ) 2
k- + 1/4H

H

http://cedarweb.hao.ucar.edu/wiki/images/e/ed/ CEDARPrizeLecture web Vadas.pdf
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GWs propagating against the wind (West here) propagate to the highest
altitudes in the themosphere

T=1000 K, Pr=0.7
west, U=100 m/'s u=0 east, U=100 m/s

wy oog=2z
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Fritts and Vadas (2008)
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Goal: Formulate a collaborative study plan to understand
lightning- ionosphere coupling

1) Mechanisms — What are the energy coupling mechanisms?
Neutral winds, GWs, EM waves, other

2) Observations — What observations have been made?
What are feasible extensions?

3) Simulation resources — What codes exist?
What is the status of validation?
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