

Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

An Introduction to Radiation-Induced Failure
Modes and Related Mitigation Methods For Xilinx

SRAM FPGAs
Heather Quinn1, Paul Graham1, Keith Morgan1, Jim Krone1, Michael Caffrey1, and Michael Wirthlin2

1ISR-3 Space Data Systems, Los Alamos National Laboratory, Los Alamos, NM, 87545 USA
2Brigham Young University, Provo, UT, 84602 USA

Abstract - Using reconfigurable, static random-access
memory (SRAM) based field-programmable gate arrays (FP-
GAs) for space-based computation has been an exciting area
of research for the past decade. In comparison with traditional
radiation-hardened electronics, these devices would allow
spacecrafts to be more adaptive and responsive to chang-
ing mission needs. Unfortunately, all commercially available
SRAM-based FPGAs have problems with the harsh radiation
environment in space. This paper will provide an introduction
to the potential radiation-induced faults and possible mitiga-
tion methods

Keywords: FPGAs, failure modes, redundancy, scrubbing

1. Introduction
Over the past decade, several organizations have started

using static random-access memory (SRAM) based field-
programmable gate arrays (FPGAs) in space-based compu-
tational platforms [1], [2]. SRAM-based FPGAs can pro-
vide orders of magnitude speedup over traditional radiation-
hardened microprocessors without the cost of manufacturing
application-specific integrated circuits (ASICs). The repro-
grammable nature of these devices allows them to be updated
while on orbit, either with improved designs for current
missions or to support new missions. Thus, as a result of
this reconfigurability, the hardware’s usable lifetime can be
significantly extended.

The space environment has a very rich radiation envi-
ronment of electrons, protons and heavy ions. Each orbit
is characterized by an ion spectrum, where each ion has a
corresponding energy spectrum. Unfortunately, all commercial
SRAM devices are affected by these radiation environments,
and SRAM-based FPGAs are no exception. Radiation-induced
faults are particularly difficult with FPGAs since both the
circuit and the circuit’s state are stored in radiation-tolerant
SRAM.

In this paper, we will present a taxonomy of possible radi-
ation effects (Section 2) and a taxonomy of failure modes for

Document release number: LA-UR-08-0843. This work was funded by the
Department of Energy through the Deployable Adaptive Processing Systems
and Sensor-Oriented Processing and Networking projects, the Cibola Flight
Experiment project at Los Alamos National Laboratory, NASA through the
Reconfigurable Hardware in Orbit project under AIST contract #NAG5-13516,
and the Air Force Research Laboratory under the FPGA Mission Assurance
Center.

Xilinx Virtex family SRAM-based FPGAs1 in harsh radiation
environments (Section 3). This paper will also provide an
overview of fault mitigation methods (Section 4) that can be
used to mitigate their effects. This paper is an update of our
2003 paper [3] and a shortened version of our Design Guide
available through the FPGA Mission Assurance Center [4].

2. Basic Radiation Effects on Semicon-
ductor Devices

Space-based electronics must be able to withstand the
radiation environment and still be able to process reliably
over the usable lifetime of the mission. While there are
number of radiation-induced faults that could beset space-
based hardware, most designers are concerned about total
ionizing dose (TID) and single-event effects (SEEs). SEE
can take many forms, such as single-event latchup (SEL),
single-event transients (SETs), single-event upsets (SEUs), and
single-event functional interrupts (SEFIs). These effects are
discussed in greater detail below.2

2.1 Total Ionizing Dose
While deployed, the voltage and switching characteristics

of transistors can change gradually with long-term exposure
to protons and electrons [6]. Space-bound electronics are
tested for the maximum amount of radiation the device can
accumulate before it cannot be used reliably. The amount of
radiation a deployed system will endure is dependent on the
orbit and the mission duration. For a low earth orbit (LEO),
100 kRads of total ionizing dose should be sufficient for
several years of reliable operation, which is a requirement that
Virtex family devices meet.

2.2 Single-Event Effects
There are four primary forms of SEE that SRAM-based

devices are concerned about: SEL, SEU, SEFI, and SET.

1In this paper, Xilinx Virtex family devices means Virtex-I, Virtex-II and
Virtex-4 devices, unless specified. These three devices currently have space-
qualified parts (“Q”) versions that are manufactured on an epitaxial layer to
prevent SEL and have military specification packaging. The Virtex-II Pro and
the Virtex-5 device will not be touched on this paper, since there are not
space-qualified part for these lines.

2For a more in-depth discussion of radiation effects, the authors suggest
“The Radiation Effects Handbook” [5].

While there are a handful of SEE types that can damage a
device, SEL is the predominant concern. The remaining three
SEE mechanisms discussed in this paper are not destructive,
but can make fault-tolerant computation challenging. These
phenomena are discussed below.

2.2.1 Single-Event Latchup

Latchup is an issue that semiconductor manufacturers are
already concerned about for terrestrial electronics reliability
since it can destroy semiconductor devices through exces-
sive current draw. Complementary metal oxide semiconductor
(CMOS) technology is prone to latchup due to the parasitic
transistors that result from integrating PMOS and NMOS tran-
sistors. SEL is a radiation-induced version of this destructive
mechanism, where the charge implanted from the ionizing
particle causes current to flow in the parasitic transistors.
Designers generally avoid devices that are prone to SEL since
many systems cannot tolerate the risk of having a damaged
device while on orbit. For this reason, Altera’s product lines
have been avoided [7]. Xilinx products are free from latchup
in the presence of protons and heavy ions.

2.2.2 Single-Event Upsets

The most common radiation-induced faults in SRAM-based
FPGAs are SEUs (or upsets). SEUs affect memory devices
by changing the stored values in memory bits, which could
change the implemented circuit or the circuit’s state in SRAM-
based FPGAs. Specific failure states caused by SEUs are
discussed in Section 3.

2.2.3 Single-Event Functional Interrupts

SEFIs are SEUs that cause more global functional effects
and may require a device reset for device functionality to
return. In SRAM-based FPGAs, SEFIs are often caused by
SEUs in the control logic of the device, such as the internal
control registers or the configuration interfaces (JTAG or
SelectMap). Detecting and mitigating SEFIs is a challenge
since the affected state can not be easily observed or fixed from
the user standpoint. Specific SEFIs are discussed in Section 3.

2.2.4 Single-Event Transients

Single-event transients (or transients) are common in many
semiconductor circuits. With this phenomena the ionizing
particle causes a transient current state. If this transient state
can propagate to a register during the setup and hold time
(called the window of vulnerability), the transient will be
latched (called a latched SET) as the intermediate data value
and the circuit’s state could be corrupted. For modern CMOS
devices with fast clock speeds, latched SETs have become
increasingly more common and distinguishing transients from
legitimate signals is challenging. Unlike SEUs, latched SETs
have a radiation-induced error rate that is dependent on the
circuit’s operating speed as faster clock speeds are more likely
to latch SETs than slower clock speeds. For SRAM-based
FPGAs, where the user flip-flops are outnumbered by several
orders of magnitude by the configuration memory, the current

understanding is that SETs are possible, but observability
of SETs is hindered by the sheer number of SEUs in the
configuration memory.

Fig. 1. Heavy Ion Bit Cross Sections for Virtex Family Devices [8].

Table 1. Bit Cross-Section for SEUs and Device Saturation Cross-section
for SEFIs for Protons for Several Xilinx FPGAs [9]

Device Energy σbit σSEFI

(MeV) (cm2/bit) (cm2/device)
XCV1000 63.3 1.32× 10−14 ≈ 7.1× 10−13

(config SEFI)
XC2V1000 63.3 2.10× 10−14 9.46× 10−13

XC4VLX25 63.3 1.08× 10−14 6.43× 10−12

XC5VLX50 65.0 7.56× 10−14 Unknown

2.2.5 SEE Data

To determine on orbit error rates, the SEU and SEFI
sensitivities have been measured experimentally for the Xilinx
Virtex family devices using heavy ion and proton particle
accelerators. SEUs are measured as either a per-bit sensitiv-
ity (bit cross-section) with units of cm2/bit or a per-device
sensitivity (device cross-section) with units of cm2. SEFIs
are measured as a per-device sensitivity (device cross-section)
with units of cm2. Cross-sections have two interesting char-
acteristics: an onset threshold and a saturation cross-section.
The onset threshold indicates the lowest energy or energy
equivalent needed to cause an SEU or a SEFI, which can be
less than 1 MeV-cm2/mg for heavy ions. The saturation cross-
section indicates the maximum sensitivity to the radiation
source and often does not saturate in modern devices due to
the presence of multiple-bit upsets [9].

Table 1 has a list of SEU bit cross-sections and SEFI device
cross-sections for 63.3 or 65 MeV protons and Figure 1 shows
the SEU bit cross-sections for heavy ions for Virtex family
devices. Note that in proton the SEFI device cross-sections
from Table 1 appear to be on the same scale as the SEU
bit cross-sections, which is consistent with our understanding
that the control logic is controlled by tens to hundreds of

configuration bits. It should also be noted that the sensitivity
to heavy ions is five to seven orders of magnitude larger than
protons. While all of the SEU bit cross-sections are very small,
each device has millions of bits. These cross-section values are
used with orbit prediction tools, such as CREME96 [10], to
determine the expected on-orbit error rate for a given device.

3. Failure modes from SEUs and SEFIs
FPGAs have many SEU-induced failure modes that conven-

tional ASICs circuits do not have. For example, by changing
one configuration bit, a LUT resource may no longer operate
as a simple LUT, a wire might not connect the same two end-
points, or an input may suddenly be coming from somewhere
else. For this paper, we will classify errors in this manner:
failure modes that affect the circuit functionality, failure modes
that affect the circuit’s state, and failure modes that affect the
device’s functionality.

3.1 Failures that Affect Circuit Functionality
For SRAM-based FPGAs the circuit functionality is vul-

nerable to three types of changes: routing, LUTs, and tie
offs. While maintain the LUT functionality is of the utmost
priority for fault tolerant computing, the routing network and
the tie offs are equally as important, if not more so, to
maintaining circuit functionality. SEUs in the routing network
can sever wires, making the transmission of the intermediate
data values or the clock impossible. Furthermore, SEUs in
tie offs can cause incorrect values to be injected into adders
and multipliers. The vulnerabilities of these components is
discussed in detail below.

3.1.1 Routing Vulnerabilities

In Virtex family FPGAs, the routing network largely con-
sists of multiplexers, programmable interconnect points (PIPs),
and buffers. In the older devices wires were connected using
pass transistors (PIPs), whereas the newer devices use mul-
tiplexers. Finally, buffers are used where wires need to be
actively and selectively driven by a few sources. These three
resources are discussed below.

The select lines for routing multiplexers control which
route is configured. These select line values are stored in
configuration memory. An SEU in the select line configuration
bits will cause a different routing configuration to be used.
An example multiplexer select failure is shown in Figure 2.
In practice, this could cause an input to float if the new input
is not driven.

Configuration
bits

0

0

(a) Original

Configuration
bits

Configuration bit
SEU

0

1

(b) After Upset

Fig. 2. Multiple xor Select Failure Example

PIPs have two kinds of SEU-induced failures: shorts and
opens. Figure 3(b) depicts a PIP short failure, where two wires
with different functions in the design are shorted together. A
PIP short can produce contention, causing output errors and
increased power consumption. Figure 3(d) shows a PIP open
failure. This failure effectively breaks a wire into two pieces
and interrupts the flow of information from one part of the
design to another.

Configuration
bits

Active
Wire

A

Active
Wire

B

0

"Off"

0

(a) Originally Unconnected

Configuration
bit

Active
Wire

A

Active
Wire

B

"On"

Configuration
Bit SEU

1

(b) PIP Short Failure

Configuration
bit

Source
Wire

A

Load
Wire

B

"On"

1

(c) Originally Connected

Configuration
bit

Source
Wire

A

Load
Wire

B

"Off"

Configuration
Bit SEU

0

(d) PIP Open Failure

Fig. 3. PIP Failure Mode Examples

Buffers, like PIPs, either short or open when they fail.
The main difference between buffers and PIPs is that a
buffer failure is caused by an active driver and, therefore,
is unidirectional, in a sense. With a PIP failure, it is quite
possible that errors can be caused on both sides of the PIP,
but with a buffer failure only the output is affected. As buffers
usually are placed on the outputs of some multiplexers and on
bi-directional wires, an SEU could cause a wire to be undriven.

3.1.2 Logic Vulnerabilities

There are two types of logic vulnerabilities: LUT value
changes and control bit changes. The Virtex family FPGAs use
lookup tables to generate most logic functions, so a change in
the values stored in a LUT would impact the logic function
implemented therein. This failure mode could cause constant
or intermittent output errors depending on the inputs to the
circuit and which part of the logic function is impacted. An
example of a LUT value change is shown in Figure 4. Here
the LUT implements a 4-input AND function. If the one
bit that defines the “true” condition is upset, the result is
a constant-zero function. For most inputs, the output of the
function would still be correct, however, one case would cause
problems.

In contrast to LUT value changes, control bit changes
generally cause errors for all, or almost all, possible circuit
inputs. The CLBs and IOBs use quite a few control bits
to determine miscellaneous functionality. Figure 5 shows a
partial schematic of a CLB. Bits V, E, F, and G are called
programmable inversion bits. An upset to one of these will
cause the value carried on that particular wire to be inverted,
likely resulting in a circuit error when the value is used. The
T bits, on the other hand, determine whether the LUT in this

LUT

0
0
0 0 0

0 0 0
0000

0 0 0 11
1
1
1

1

O=F1*F2*F3*F4

F4
F3
F2
F1

O

(a) Original 4-input AND
Function

Configuration
Bit SEU

LUT

0
0
0 0 0

0 0 0
0000

0 0 0 01
1
1
1

0
F4
F3
F2
F1

O

O=0 (constant zero)

(b) Upset LUT Function (Constant “0”)

Fig. 4. LUT Upset Example

CLB performs as a LUT, a 16x1 dual-ported RAM, a part
of a 32x1 RAM, or as a programmable shift register. If a
LUT suddenly turns into a shift register, output errors will
likely result. Other control bits determine such things as the
electrical standard used in off-chip I/O and whether a storage
element is a flip-flop or a latch.

Fig. 5. Control Bit Examples [11]

3.1.3 Tie Offs

Tie offs are needed to generate constant zero and one
logic values used internally by FPGA designs [12]. “Implicit”
logical constants are widely used in designs to drive inputs
to I/O, logic, RAM, clocking, and other resources. “Explicit”
logical constants are needed for the zeroth bit of the carry
chain for adders and unused multiplier/DSP inputs. Each
device in the Virtex line has designed different approaches to
tie offs. In all of the devices, the implicit logical constants were
implemented with half-latches. In the Virtex-I, explicit logical
constants were less noticeable, since these devices do not
have embedded multipliers. When explicit logical constants

are needed in the Virtex-I a combination of half-latches and
constant LUTs are used, depending on where the value is
needed. In the Virtex-II, the explicit logical constants are
implemented with constant LUTs and, in the Virtex-4, each
CLB has a VCC post. Unfortunately, half-latches and constant
LUTs both have known failure modes.1

The vulnerability of half-latches is two fold: the weak
keeper circuit is susceptible to SEUs and the half-latches are
hard to observe. As half-latches are not directly initialized
or controlled with programming data, their state is hard to
observe and modify. For the Virtex-I, these two problems in
concert made half-latches challenging, as the upset half-latches
could hold the erroneous state for many seconds or longer and
only a full reconfiguration would re-initialize half-latches. In
Virtex-II and Virtex-4 devices, the half-latches generally return
to their intended state within a few seconds, due to what is
assumed to be a weak keeper with leakier transistors. While
this means that transient-like behavior could be caused by the
Virtex-II or Virtex-4 half-latches, at least they do not appear
to require intervention to fix the circuit functionality.

For the Virtex-II, all of the explicit tie offs used in the
carry chain of adders and unused inputs of the multipliers
are supplied by constant LUTs, called the global logic 0/1
networks or the power network. In the Virtex-I some of the
explicit tie offs are implemented in half-latches and others
are implemented through constant LUTs. These constant LUT
tie offs are susceptible to the usual LUT and routing SEU
vulnerabilities. Unlike half-latches, which usually only provide
localized, slice-level logical constants, constant LUTs are load
balanced by the Xilinx tools so that several resources share the
same constant LUT. Unfortunately, in designs that are masking
SEUs using redundancy-based methods, sharing resources in
this manner can cause single points of failure in the design.

3.2 Failures that Affect Circuit State
Maintaining a circuit’s state can be difficult on orbit, as

the state is vulnerable to SEUs that affect circuit functionality
or SEUs in the user memory. In particular, when a circuit’s
functionality is affected by an SEU, incorrect intermediate data
values could be generated. After the circuit’s functionality is
repaired through on-line reconfiguration, the bad state data
generated during the error state will remain until it either
naturally flows out of the system in feed forward circuits or
the circuit is reset under more pathological conditions.

Vulnerabilities in the routing network are especially prob-
lematic to global signals, such as clocks and resets. Since
errors are likely in circuits, space-ready designs frequently
have global reset signals to force designs into a known state
to ease initialization and recovery. Since FPGA architectures
generally do not provide dedicated routing resources for resets,
global resets utilize the general routing network, using a
significant amount of resources and providing a large “target”
for SEU-induced errors. Finally, one of the most common
approaches to eliminating problems with logical constants
used for tie offs involves driving the constants from input

1We are currently investigating SEU-related reliability issues with the
Virtex-4 tie off posts.

pins, elevating logical constants to global signals. In all of
these cases, the global nature of these signals means that SEUs
that affect these signals can have significant impacts on circuit
function.

Finally, SEUs can also directly affect user memory, such
as user flip-flops or user SRAM, which could directly affect
the circuit’s state. While it is possible to discern upsets to any
user-specified ROMs in the bitstream, the state of most user
memory tends to be very dynamic, changing on a clock-cycle
basis in some cases, and it is, therefore, hard to distinguish
an error state from normal operation. Furthermore, it is not
generally possible to read the contents of the memory while
it is actively being used in a circuit without the possibility of
affecting its content.

3.3 Failures that Affect the Device’s Functional-
ity

The device has a handful of configuration and control regis-
ters that result in SEFIs. Examples of SEFIs that have affected
multiple Virtex family devices include JTAG TAP controller
upsets, SelectMAP controller upsets, and configuration control
logic upsets (Power-On-Reset or POR). The Virtex-4 is also
susceptible to Frame Address Register (FAR), Global Signal,
Readback and Scrub SEFIs. All of these SEFIs are discussed
below.

A SEFI in the JTAG controller, whether it is being actively
used or not, will move the device into an undesirable state.
Compounding the problem, the Virtex family devices do not
make the reset pin (TRST) available to the user, denying
designers the ability to hold the JTAG controller in reset while
it is deployed.

SEFIs within the programmable SelectMAP interface con-
figuration pins will cause bad values to be returned on a read
and corrupt the configuration when writing. Since the interface
can no longer be accessed reliably, reading and writing to the
device through this interface should be suspended until fixed.
The Virtex-4 has two additional SEFIs (FAR and Readback)
that mimic the SelectMAP SEFI. With the FAR SEFI the
FAR will increment “continuously” and “uncontrollably” [13].
While the SelectMAP port will remain accessible during a
FAR SEFI, the FAR will not be under user control. Virtex-4
designs that do not use the GLUTMASK configuration option
are also susceptible to a Readback SEFI. This option ensures
that the state of LUTs being used as RAM or shift registers
are not affected by on-line reading or writing of the FPGA’s
configuration memory. Without GLUTMASK enabled, a false-
positive SelectMap SEFI can be detected because on-line
reconfiguration schemes might appear to not be working.

The configuration control state machine of Virtex family
devices are vulnerable to the power-on reset (POR) SEFI. In
this case, the device behaves as if PROGRAM has been
asserted — its configuration is cleared and the DONE pin is
driven low.

The Global Signal SEFI is an umbrella SEFI that covers
functional interrupts to the the Virtex-4’s global signals, such
as Global Set/Reset, Global Write Enable, and Global Drive

High. These signals are observed through upsets in the con-
figuration status (STAT) and control (CTL) registers.

The final SEFI is the Scrub SEFI observed in the Virtex-4.
In this case, the control logic can be upset while scrubbing,
causing a corruption of the data being scrubbed in. Not only
does this affect the design, but causes a high current state [14].

4. Mitigation and Repair Methods
Without proper mitigation, there is no guarantee that output

data will not be corrupted by SEUs. Accumulating SEUs
increases the likelihood that output data corruption occurs.
Accumulating upsets will also cause the device to draw more
current, which could critically affect the device or the battery
resources on the spacecraft. Therefore, mitigation and repair
of SEUs is essential for reliable computation. To date, the
best option found for mitigating SEUs [15] is to mask SEUs
through the use of redundancy-based methods, such as triple-
modular redundancy (TMR). On-line reconfiguration, called
scrubbing, can be used to remove SEUs from devices. Previous
research has shown that TMR with scrubbing is an effective
method of masking the effects of SEUs [16]. As stated before,
detecting SEFIs internally on the device is impossible and
SEFI detection/mitigation is usually handled by an external
scrubbing circuit. These two concepts will be described in
better detail in the following two sections.

4.1 Triple Modular Redundancy (TMR)
The concept of a redundancy-based masking scheme was

first introduced by von Neumann in 1956 [17]. While
redundancy-based masking schemes can have any number of
redundant copies of the circuit, the minimum number for
masking is three copies. Voters compare the modules’ outputs
and output the majority value. Internal voters on SRAM-based
FPGAs are susceptible to SEUs and are often triplicated, as
shown in Figure 6, to remove the possibility that the data can
be corrupted in the voters. For those applications that require
maximum reliability for the FPGA hardware, we strongly
recommend that TMR be applied to all aspects of the design,
including I/O, global signals, logic and voters. Our recent work
has shown that not triplicating global signals can make TMR-
protected circuits less reliable than unprotected circuits [18].

Fig. 6. The recommended implementation of TMR functional with triplicated
modules (M) and voters (V).

The robustness of TMR masking schemes is dependent
on failures existing in only one module at any give time.
Previous research shows that fully TMR-protected FPGAs
circuits have had the single-bit SEU cross-section completely

removed from a design, leaving the design vulnerable to only
SEFIs and non-single-bit SEUs. When faults exist in different
redundant modules, masking cannot be guaranteed. Therefore,
scrubbing is necessary to maintain the assumption that at most
one modules is broken at a time. As long as the repaired
module can resynchronize it’s state before the next SEU
occurs, there should only be one fault in the system at any
given time. In larger, newer systems, the chance that either
multiple-independent upsets (MIUs) or a multiple-bit upset
(MBU) [9], where a single-ionized particle causes multiple
upsets, occurs has become increasingly more likely. We have
shown in previous work that designs that are able to mask
all single-bit upsets might not be able to mask all MBUs
[8]. Currently, there is no method to mask all MBUs. MIUs
can be mitigated more effectively when the design is broken
into several partitions and the smaller partitions are voted on.
With this method, the TMR-protected design should be able
to withstand more upsets, as long the upsets do not cause two
or more modules in the same partition fail.

Because design tools perform many steps of translation
and optimization on SRAM-based FPGA circuit designs, even
the most careful descriptions of TMR-protected circuits in
hardware description languages are often undermined by the
synthesis tools removing all or some of the redundant logic.
Furthermore, tying off all of the tristate buffers and unused
inputs is difficult at the VHDL level. To circumvent these
problems, we strongly recommend using one of the two tools
that automatically apply TMR to post-synthesis circuit repre-
sentations. One tool, called the BL-TMR tool, was developed
by BYU and LANL and specializes in automatically applying
partial TMR to designs when the fully triplicated design will
not fit on the device [19]. The second tool is from Xilinx and
is called the TMR tool [20]. Both of these tools will not only
automatically TMR the design properly, but can handle the
extraction of logical constants by driving half-latches and the
power network from input pins.

Due to pin and area limitations, designers are sometimes
unable to fully apply TMR to a design. In other cases,
the reliability requirements for a mission may not warrant
complete triplication, freeing FPGA resources for computation
rather than reliability. In these situations, designers frequently
decide not to triplicate global signals and/or I/O blocks, and
SEUs affecting these resources will affect the hardware depen-
dent on these resources. Under these circumstances, internally
triplicating these signals can minimize the unprotected cross-
section.

Alternatively, both the BL-TMR and TMR tools can apply
partial TMR to a design. While the portions of the design not
protected by TMR are user-specified in the TMR Tool, the BL-
TMR tool was designed to automatically determine the most
“critical” portions of the circuit that may induce persistent
error states due to feedback. These are more critical because,
unlike feed-forward circuits, these circuits may require exter-
nal intervention to return to a functioning state. Of course,
circuits that have only been partially protected with TMR
are susceptible to some number of single-bit SEU-induced
failures.

We have also found several scenarios where the imple-

mented design is not as fully protected as expected. Further-
more, new error modes continue to be discovered. Therefore,
assuming that a design is completely protected from SEUs
is unwise until the design has been tested. Determining the
unprotected cross-section from the design tools is an arduous,
error-prone task and is not recommended. The current “gold
standard” for pre-launch testing is radiation experiments at
a particle accelerator. On one hand, given enough time and
money, the experiments will be able to exercise all of the
possible radiation-induced failure modes and find all of the
problems with a user design. On the other hand, given the
statistical nature of radiation-induced faults, it may be too
expensive to get good test coverage and difficult to understand
how the errors correlate to faults in the user design. In our
work, we use fault injection and fault modeling tools until the
design is mature enough to be taken to an accelerator. In this
manner, accelerator testing is used for validation.

LANL and BYU, among a few others, have created fault
injection tools for the Xilinx Virtex family of devices that
can inject single- and multiple-bit errors into an FPGA’s
programming data so that output errors can be accurately
attributed to individual bits or sets of bits in the configuration
bitstream [21]. The advantage of well-designed fault injection
tools is that the design can be uniformly upset across the
device, effectively removing the statistical nature of accelerator
testing. In addition, LANL has created a modeling tool—the
Scalable Tool for the Analysis of Reliable Circuits (STARC)—
that analyzes EDIF circuits representations for SEU vulnera-
bilities [18]. STARC is helpful for reliability analysis early
in the design process (even before the target hardware is
available) and in cases where fault injection is not feasible
due to the design or available hardware and software. With
these tools, unprotected cross-section can be quantified so that
designers can decide whether the amount of unprotected cross-
section is reasonable.

4.2 Scrubbing
Scrubbing uses on-line reconfiguration — a feature unique

to Xilinx SRAM FPGAs — to reload the FPGA’s configura-
tion bitstream during circuit operation, removing any SEUs
that may have accumulated in the bitstream between scrubs.
While Xilinx provides some guidance [22], Xilinx should be
engaged to guarantee scrubbing is done properly. In the past,
“blind scrubbing”, where the programming data is continually
rewritten without reading the data back to ensure data integrity,
was used frequently. Over the years, though, the control logic
and registers necessary for scrubbing have grown larger and
SEUs in these areas during scrubbing have been observed to
cause the Scrub SEFI that causes a high current state on the
device [14].

One recommended scrubbing algorithm is as follows:
1) Readback the configuration data.
2) Complete a CRC check for each configuration data

frame.
3) If the CRC value does not match, scrub the frame.

Since the device is not scrubbed end-to-end, the Scrub SEFI
should only affect one frame instead of multiple frames. Often

times, when the device has suffered a SEFI, the number
of frames that need to be scrubbed in a single scrub cycle
will increase dramatically. Therefore, an effective method of
detecting SEFIs is to keep track of how many frames are
scrubbed in a scrub cycle. If this number exceeds some
threshold, then a complete reconfiguration of the device is
done and the circuit state is reset to fix the SEFI-affected logic.

For the Virtex-I and Virtex-II bitstreams, the portion
scrubbed includes all of the configuration data for the global
clock (GCLK), BRAM interconnect, IOB, and CLB configu-
ration data. In these devices, LUT RAM, SRL16s and BRAM
could not be scrubbed effectively, since either reading back
their stored data would interrupt circuit operation or predicting
the correct value to scrub into memories with dynamic values
was too difficult. In the Virtex-4, there is a mechanism on the
device that can be used to skip LUT RAM resources when the
programming data is being read or written, making it possible
to use the scrubbing approach mentioned above in the presence
of user LUT RAM and SRL16s. In cases where the BRAM is
being used as a ROM, scrubbing is necessary, and a BRAM
scrubber is available from Xilinx [23].

5. Conclusion
In summary, this paper presented a number of possible

radiation-induced faults in SRAM-based FPGAs. These faults
can affect circuit functionality, circuit state, or device function-
ality. Further, we presented how TMR could be used to mask
SEUs in the user design and how on-line reconfiguration could
be used to remove SEUs from the device.

References
[1] E. Fuller, M. Caffrey, P. Blain, C. Carmichael, N. Khalsa, and A. Salazar,

“Radiation test results of the Virtex FPGA and ZBT SRAM for
space based reconfigurable computing,” in Proceeding of the Military
and Aerospace Programmable Logic Devices International Confer-
ence(MAPLD), Laurel, MD, September 1999.

[2] M. Caffrey, M. Echave, C. Fite, T. Nelson, A. Salazar, and S. Storms,
“A space-based reconfigurable radio,” in Proceedings of the 5th Annual
International Conference on Military and Aerospace Programmable
Logic Devices (MAPLD), September 2002, p. A2.

[3] P. Graham, M. Caffrey, M. Wirthlin, E. Johnson, and N. Rollins,
“Consequences and categories of SRAM FPGA configuration SEUs,” in
Proceeding of the Military and Aerospace Programmable Logic Devices
International Conference(MAPLD), Washington, DC, September 2003.

[4] P. Graham, H. Quinn, and J. Moore, Xilinx Virtex FPGA Design Guide
for Space. on web at www.fpgamac.com, 2008.

[5] A. Holmes-Siedle and L. Adams, Handbook of Radiation Effects.
Oxford University Press, 2002.

[6] H. Barnaby, Evolving Issues for the Application of Microelectronics in
Space, ser. Short Course Notebook for the Nuclear and Radiation Effects
Conference. IEEE, 2005, ch. Total Dose Effects in Modern Integrated
Circuit Technology.

[7] S. L. Clark, K. Avery, and R. Parker, “TID and SEE testing results of
the Altera Cyclone Field Programmable Gate Array,” IEEE Radiation
Effects Data Workshop, pp. 88 – 90, 2004.

[8] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and K. Lund-
green, “Domain crossing errors: Limitations on single device triple-
modular redundancy circuits in Xilinx FPGAs,” IEEE Transactions on
Nuclear Science, vol. 54, no. 6, pp. 2037 – 43, 2007.

[9] H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui, “Radiation-
induced multi-bit upsets in SRAM-based FPGAs,” IEEE Transactions
on Nuclear Science, vol. 52, no. 6, pp. 2455 – 2461, December 2005.

[10] “Cosmic ray effects on micro-electronics (1996 revision),” on web
https://creme96.nrl.navy.mil/.

[11] “http://www.xilinx.com/labs/projects/jbits/.”
[12] P. Graham, M. Caffrey, M. Wirthlin, D. E. Johnson, and N. Rollins,

“SEU mitigation for half-latches in Xilinx Virtex FPGAs,” IEEE Trans-
actions on Nuclear Science, vol. 50, no. 6, pp. 2139–2146, December
2003.

[13] G. Allen, G. Swift, and C. Carmichael, “Virtex-4VQ static SEU char-
acterization summary,” Xilinx Radiation Test Consortium, Tech. Rep. 1,
2008.

[14] C. W. Tseng, C. Carmichael, and G. Swift, “Optimizing configuration
management for SEU mitigation in Xilinx Virtex-4 FPGA and self-
scrubbing,” http://nepp.nasa.gov/mafa/talks/MAFA07 20 Allen.pdf.

[15] K. Morgan, D. McMurtrey, B. Pratt, and M. Wirthlin, “A comparison
of TMR with alternative fault-tolerant design techniques for FPGAs,”
IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2065 – 2072,
2007.

[16] N. Rollins, M. Wirthlin, M. Caffrey, and P. Graham, “Evaluating TMR
techniques in the presence of single event upsets,” in Proceedings fo
the 6th Annual International Conference on Military and Aerospace
Programmable Logic Devices (MAPLD). Washington, D.C.: NASA
Office of Logic Design, AIAA, September 2003, p. P63.

[17] J. von Neumann, “Probabilistic logics and the synthesis of reliable or-
ganisms from unreliable components,” in Automata Studies, C. Shannon
and J. McCarthy, Eds. Princeton University Press, 1956, pp. 43–98.

[18] H. Quinn, P. Graham, and B. Pratt, “An automated approach to esti-
mating hardness assurance issues in triple-modular redundancy circuits
in Xilinx FPGAs,” accepted to the IEEE Nuclear and Space Radiation
Effects Conference 2008.

[19] K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and M. Wirth-
lin, “SEU-induced persistent error propagation in FPGAs,” IEEE Trans-
actions on Nuclear Science, vol. 52, no. 6, pp. 2438 – 45, 2005.

[20] “Xilinx TMRTool user guide,” on web:
http://www.xilinx.com/products/milaero/ug156.pdf.

[21] E. Johnson, M. Caffrey, P. Graham, N. Rollins, and M. Wirthlin,
“Accelerator validation of an FPGA SEU simulator,” IEEE Transactions
on Nuclear Science, vol. 50, no. 6, pp. 2147–2157, December 2003.

[22] C. Carmichael, M. Caffrey, and A. Salazar, “Correcting single-event
upsets through Virtex partial configuration: Application Note 216,” on
web: http://www.xilinx.com, 2000.

[23] G. Miller, C. Carmichael, and Jet Propulsion Labs, “Single-event upset
mitigation for Xilinx FPGA block memories: Application Note 962,” on
web: http://www.xilinx.com, 2004.

