NOTE: Use these huttons to print or save the form. DO NOT use the browser tool bar. SAVE PRINT

LA-UR-08-04475

Approved for public release;
distribution is unlimited.

Title: | An Automates Approach to Estimating
Hardness Assurance Issues in Triple-
Modular Redundancy Circuits in Xilinx
FPGAs

Author(s): | Heather Quinn, Paul Graham, and
Brian Pratt

Intended for: | |EEE Transactions on Nuclear
Science, Dec 2008

/%
» Los Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)
SAVE PRINT CLEAR FORM

An Automated Approach to Estimating Hardness
Assurance Issues in Triple-Modular Redundancy
Circuits 1n Xilinx FPGAs

Heather Quinn, Paul Graham, and Brian Pratt

Abstract— The Xilinx Virtex family of static random
access memory (SRAM) based field programmable gate
array (FPGA) devices have made inroads into space-
based computational platforms over the past decade. These
devices are well-suited for digital signal processing (DSP)
algorithms that are often used on orbit, providing the
speedup of custom hardware without the cost of fabricating
an application-specific integrated circuit (ASIC). SRAM
FPGAs store the circuit in radiation-tolerant SRAM and
SEUs can affect both the circuit functionality and the
circuit state. Triple-modular redundancy (TMR) can be
used to mask SEUs so that malfunctioning circuitry will
not affect the output data. Unfortunately, applying TMR
to a user circuit is difficult and unprotected cross-section
is possible due to problems with the circuit design, device
constraints, or the implementation of the user circuit on the
FPGA. Given the complexity of these designs, estimating
hardness assurance issues is not simple. This paper will
present a tool, called the Scalable Tool for the Analysis of
Reliable Circuits (STARC), that can automatically estimate
unprotected cross-section and other hardness assurance
issues for TMR-protected circuits.

I. INTRODUCTION

Static random-access memory (SRAM) based field-
programmable gate arrays (FPGAs) have become in-
creasingly more common in space-based computing.
Single-event upsets (SEUs) are a problem for these
devices, as both the user’s circuit implementation and
the data are stored in SRAM. Therefore, even a single
bit flip could cause the user’s circuit to output incorrect
data. To this end, most FPGA-based systems attempt
to mask SEUs by protecting the user’s circuit with

Document release number: LA-UR-08-04475. This work was
funded by the Department of Energy through the Deployable Adap-
tive Processing Systems and Sensor-Oriented Processing and Net-
working projects, NASA through the Reconfigurable Hardware in
Orbit project under AIST contract #NAGS5-13516, and the Air Force
Research Laboratory under the FPGA Mission Assurance Center.

H. Quinn and P. Graham, are with ISR-3 Space Data Systems, Los
Alamos National Laboratory, Los Alamos, NM, 87545 USA (e-mail:
hquinn@]anl.gov)

B. Pratt is with Brigham Young University, Provo, UT, 84602 USA

triple-modular redundancy (TMR) [1]-[3]. The current
suggestion for space-based FPGA designs is to triplicate
all logic (modules and voters) and all signals (inputs,
outputs, clock, and reset). We have shown that when
these guidelines are followed it is possible to com-
pletely remove all unprotected cross-section [4] and the
design will be susceptible only to multiple-bit upsets
(MBUs), multiple independent upsets, and single-event
functional interrupts. As the occurrence of single-bit
SEUs dominate events on these devices, we believe that
most designs that use these TMR criterion should be
adequately protected on orbit.

Unfortunately, applying TMR techniques to user’s
circuits can be error-prone, leading to unprotected cross-
section in the resulting circuits. Designers are not neces-
sarily at fault in these scenarios. In particular, a number
of problems can be tied to the design flow tools, which
can only be circumvented entirely by avoiding many of
the design automation tools — a choice most designers
will not make. In other cases, designers are forced to
apply TMR only partially to a design to meet device or
resource constraints and the design will have remaining
unprotected cross-section.

In all of these scenarios, hardness assurance issues
with TMR-protected circuits can be very difficult to
ascertain, especially in complex systems. In the past,
we have used fault injection [3] to estimate hardness
assurance issues that might exist in FPGA designs.
Unfortunately, designers cannot always perform fault
injection effectively on their designs due to flight system
limitations or the limitations of hardware prototypes
amenable to fault injection. In these cases, a non-
hardware method for estimating the unprotected cross-
section and for finding design flaws is necessary.

In this paper, we present a modeling tool, called
the Scalable Tool for Analysis of Reliable Circuits
(STARC)', that helps designers identify hardness as-

"Despite being similarly named, the STAR tool from Politecnico
di Torino works at a much different level of abstraction than STARC
[5]. While providing different information to the designer, these tools
can be used in concert.

surance issues in their TMR-protected designs. With
this tool, designers are able to assess whether TMR
has been applied properly and whether unprotected
cross-section remains. The tool can also quantify any
unprotected cross-section, and determine architectural
implementation issues that could affect the reliability of
a TMR-protected design. STARC was designed to work
within the existing design flow tools so that the time
commitment needed to assess reliability issues would be
minimal. In this way, we believe designers can start to
address reliability early in the design phase, where fixing
design flaws is inexpensive.

The paper will be structured as follows. Section II will
present the related work for reliability analysis tools.
Section III catalogs a number of potential reliability
issues for TMR-protected circuit designs as they are
implemented on Xilinx FPGAs. Section IV provides
an overview of the STARC tool and how it can be
used to help designers iterate over the tradespace of
designs to minimize the unprotected cross-section in the
design. The paper concludes with a case study that looks
at the reliability tradespace for two image processing
algorithms in Section V.

II. RELATED WORK

Traditionally, circuit reliability has been determined
using purely analytical approaches [6], [7] or tech-
niques that model Boolean networks as probabilistic
systems [8]-[11]. These modeling techniques repre-
sent circuits as probabilistic transfer matrices, stochastic
Petri-nets, Markov chains or Bayesian networks. The
combinatorics-based analytical approaches have been
found to be error-prone and computationally complex
for the analysis of large designs. Similarly, a number
of limitations have been identified for many modeling-
based approaches. First of all, model creation and input
data sets greatly increase the time commitment of using
these tools. Transforming circuits into intermediate prob-
abilistic system models is an additional, computationally
complex task. Within an analytical tool a state space is
generated from the input model and input data vector
set. The state space encodes all of the possible failure
states in the circuit and grows exponentially with circuit
size. The exception to these problems is the SETRA tool
[12] that directly addresses the state space issues as well
as automated model generation. Attempts at reducing
computational complexity through circuit partitioning
and hierarchical modeling of large circuits requires ad-
ditional modeling effort. These limitations lead to the
STARC tool, which uses EDIF circuit representations, no
input data vectors, and simpler combinatorial reasoning

to decrease the time commitment for the designer and
reduce computational complexity in the tool.

Besides these differences between STARC and tradi-
tional reliability analysis tools, the tool methodologies
differ greatly. There are two distinct methods [13] that
can be used to analyze the reliability of circuits: general-
ized or instance-based. The generalized approach entails
the combinatorial modeling of circuits without consider-
ing specific failure distributions of the inputs, gates and
interconnects. A circuit’s output’s probability distribution
is computed through combinatorics under the assumption
that each gate can fail independently. Thus, the reliability
is evaluated in stages using conditional probabilities.
Generalized techniques to compute the reliability of large
circuits require complex combinatorial reasonings. Re-
using sub-circuit analysis to reduce the combinatorial
complexity in the analysis of a larger circuit is difficult.
Since specific input probability distributions are not
considered during analysis, the generalized approach
determines either the circuit’s lower or upper bound on
reliability.

Several instance-based methodologies have been pro-
posed recently [10], [11], [14]. Instance-based reliability
circuit analysis uses probability distributions on the
primary inputs as well as gate and interconnect failure
probabilities to develop an instance of the circuit. Each
instance is then transformed into probabilistic circuit
models. This method computes the exact reliability of the
circuit for the input distribution. The main drawback of
these tools is that several instances of the circuit needs to
be analyzed to predict performance trends, which can be
computationally expensive. Therefore, the input vector
set needs to be limited to bound the computational cost,
yet, provide enough intuition on the circuit’s reliability.

The STARC methodology is a hybrid of the two ap-
proaches. STARC, as with other generalized approaches,
is independent of specific input vectors and their prob-
ability distributions, yet uses specific gate distribution
instances. Hence, this approach avoids the complex
combinatorial reasonings that cause bottlenecks in gen-
eralized approaches and also bounds the computational
complexity that affects instance-based methods. STARC
computes a lower bound on reliability. When we have
compared STARC with a purely instance-based approach
based on PRISM [11], [15], the results of our comparison
of STARC and PRISM were favorable. We tested four
different designs with two probability-of-failure mod-
els based on estimated yield defects on a Dell Linux
machine with 4 GB of RAM and dual 3.4 GHz Xeon
microprocessors. We then compared the calculated reli-
ability values and execution times. The ratio of the two
calculated reliability values indicated that STARC was

within three to seven digits of significance to PRISM.
STARC also executes faster that PRISM, and for several
designs was more than nine times faster.

It should be noted that a reliability analysis tool,
called SEUper_fast [16], was designed by Boeing in the
1990s uses many of the same reasonings as probability
transfer matrix tools. This tool approached the problem
far more generally than STARC and was hindered by
solving a much more complex reliability equation than
STARC uses. While currently not as generally applicable
as SEUper_fast, we believe we will be able to generalize
this technique to different problems without having to
employ the more complex reliability analysis technique.

III. HARDNESS ASSURANCE ISSUES WITH
TMR-PROTECTED DESIGNS

The potential reliability issues for TMR-protected de-
signs for these devices are three-fold: problems with the
circuit design, design constraints, and architectural influ-
ences on the circuit design. While the device is inherently
radiation-tolerant and, therefore, SEU-sensitive while on-
orbit, using TMR to protect the circuit should mask the
effects of many SEUs as long as there is only one error
in the system at a time. Even still, there are a number
of ways in which either the design could be flawed or
the design implementation toolset could render the final
implementation of the design flawed. Furthermore, there
might be design constraints placed on the circuit — such
as not enough input/output pins for full triplication —
that affect the reliability of the design. These issues are
presented below.

A. Circuit Design Problems

The first issue is the design of the TMR-protected
circuit. Many FPGA circuit designers use a hardware
description language (HDL), such as VHDL or Verilog,
to describe the FPGA circuit. The circuit description is
then optimized for area and translated to an industry
standard circuit representation, called Electronic Design
Interchange Format (EDIF), using circuit synthesis tools,
such as Synplify or Synopsys. Even the most careful
descriptions of TMR-protected circuits are often under-
mined by the synthesis tools. As FPGA synthesis and
implementation tools are designed to remove redundant
logic to optimize the circuit for area and speed, these
tools usually recognize and remove the functional re-
dundancy intended to improve reliability. More subtly,
though, sometimes the redundant modules remain, but
are no longer functionally equivalent or independent.
In this case, part of the redundant logic is reduced to
a single implementation in one module that is shared

; L
- 1

Counterl

Counter2 Counter3

Voterl Voter2 Voter3

1 T 1

Fig. 1. An Example of a TMR-protected Counter Design with a
Number of Design Flaws

by all three modules. This problem is shown in Figure
1. In this situation, the inverter that is used for the
least significant bit in the counter has been removed
from all three modules and the inverted data is shared
by all three counter modules. While the circuit is still
functionally equivalent to a correctly TMR-protected
design, untriplicated logic now exists in the circuit. In
large circuit designs, detecting this issue is difficult.

Figure 1 also highlights a common problem in TMR-
protected circuits with feedback loops. Feedback loops
in TMR-protected systems are also sensitive to persistent
errors [17], and need to use triplication and voters to
break the feedback loops. The counter in Figure 1 shows
a feedback loop that has not been cut properly and the
counters will not be able to autonomously resynchronize
after the SEU is removed. In this scenario, while the first
SEU in the feedback loop will be masked by the voters,
another SEU in the feedback loop is not guaranteed to
be masked. To fix the counter design, the output of the
voters will need to be fed back to the input of counters
to remove the persistent cross-section.

To circumvent issues with the synthesis tools, the
recommended approach for applying TMR is to apply
TMR to the EDIF circuit descriptions while this can
be done in a text editor for small designs, the authors
suggest using one of the two automated tools (BL-TMR
[17] and TMRTool [18]). As these tools work with the
post-synthesis circuit representation, the synthesis tools
are able to optimize the basic circuit without affecting
the application of TMR. The optimization of the circuit
after synthesis is usually limited to removing signals that
do not route to output pins. Therefore, optimization of
the redundant modules is unlikely. Also, these tools have
been built with an understanding of persistence issues so

that feedback loops are properly protected by TMR.

B. Device Constraint Problems

The second issue regards design constraints. Since
these devices can be pin- and area-constrained, designers
are sometimes unable to implement a fully triplicated
design. In particular, not being able to triplicate input,
output, clock or reset signals is common, and SEUs in
the input/output blocks, routing, global clock network,
and flip-flops could cause errors to manifest across all
three logic modules. The counter in Figure 1 shows
the three counters are sharing the same inputs. While
this design is not uncommon in cases where the data
stream originates from a single sensor, unprotected cross-
section exists between the input pins and the inputs of
the counters. Furthermore, we have found that, when
not using automated tools to apply TMR to a design,
that the optimization by the synthesis tools of the TMR-
protected circuit with shared inputs is more likely to
remove most of the reliability-based redundancy. While
it is possible to triplicate some of these signals internally
on the device?, an unprotected cross-section still exists
in the system between the input pins and the triplicated
flip-flops responsible for splitting the signal.

Designers might also find themselves constrained by
the device’s size, and are unable to fully triplicate the
circuit logic. The BL-TMR tool addresses this problem
by balancing the need to protect the most essential parts
of the design and meeting area constraints by applying
TMR partially to the circuit. BL-TMR gives highest
priority to sub-circuits that may reach a persistent error
state due to feedback, since error recovery may require
external intervention. In cases where TMR has only been
partially applied to the circuit, there exists an unprotected
cross-section. The effect of this unprotected cross-section
can be hard to quantify.

C. Circuit Implementation and Architectural Problems

The third issue is the implementation of the circuit on
the architecture. There are several problems that are di-
rectly tied to the placement of the circuit onto the device,
such as domain crossing errors and logical constants.
These devices are very complex and have a number of
architectural components, such as the resources for fast
carry-chains, shift registers, and embedded arithmetic
functions, to improve the speed, power, and silicon
utilization of user circuits. As an artifact of translating a
design to the specific resources available on the FPGA,

%Clocks should only be triplicated using the global clock buffers,
and skew should be carefully monitored.

sometimes the inputs to carry-chains and multipliers
need to be tied to a ground, as when the multiplication is
using fewer inputs than the embedded multipliers have.
These grounds are tied to a logical constant on the power
network, called the global logic network. The power
network is a virtual network of grounds and VCCs that
use constant LUTs. Since the power network is load
balanced by the tools, redundant logic could share the
same power network, introducing potential single points
of failure into the design. Further complicating the issue,
the power network is implemented in SEU-sensitive
logic, which could translate to a large, unprotected cross-
section in the design. Since the load balancing affects
the number of constant LUTs that are used, the exact
quantity of single points of failure caused by them cannot
be determined until after the design is placed.

Both BL-TMR and TMRTool tools address this issue
by extracting the half-latches and the constant LUTSs to
input/output pins to provide these constant logic values
in a TMR domain-aware manner. Since this solution
elevates logical constants to a global signal, like the
clock tree, the input/output pins used for the logical
constants will need to be triplicated.

The final reliability problem involves the placement
of the design on the device. Since many of the tools
involved in converting a designer’s circuit description to
a bitstream are attempting to minimize the implemented
circuit’s area and maximize the clock speed, redundant
logic can be placed in close proximity. We have shown
in the Virtex-II that, when area and timing constraints
cause the device to be highly utilized, there is a chance
an MBU can defeat TMR by introducing errors into
multiple redundant modules, a situation referred to as a
domain crossing event [4]. In this study, we observed
Virtex-II circuits that had no single bit upset (SBU)
cross-section, but still had a DCE cross-section. We are
currently investigating recent test results that indicate
that domain crossing errors from single-bit SEUs are
possible on the Virtex-4.

IV. CIRCUIT RELIABILITY ANALYSIS

STARC was designed to address the limitations of
traditional reliability modeling tools in modeling user
circuits for FPGAs, as well as address domain-specific
issues with implementing TMR in FPGA circuits. In
the past, this tool has been used to model both the
reliability of supercomputers in the presence of neutron
radiation [19] and nano-scale electronics in the presence
of permanent yielding defects [20]. The main drivers for
STARC are usability, computational complexity, scala-
bility and modularity. STARC addresses these limitations
with these solutions:

« Usability: the industry-standard EDIF circuit repre-
sentation is used for the input model, and input vec-
tor sets are not used. STARC was also designed to
assess domain-specific problems of applying TMR
to FPGA user circuits and can detect imbalances
between the modules, find untriplicated logic, esti-
mate unprotected cross-section, and detect logical
constant usage.

o Computational Complexity: memoization of re-
liability values reduces recomputation of similar
components, and the use of combinatorial reason-
ings simplifies the reliability calculation.

o Scalability: without input vectors the state space
scales linearly with the circuit size.

o Modularity: the architectural and fault models that
provide the basis of the reliability calculation are
inputs to STARC and can be replaced with user-
specified architectures and fault models.

By using the EDIF circuit representation, the designer
can assess the reliability of a circuit during the design
process, even if the design is not complete, the design
does not work, or the hardware is not available. Without
the use of input vector sets reliability is determined
through the probability of device or input failure and is
not dependent on specific input data sets. Without input
data sets, the reliability of components are determined by
type, such as a two-bit adder, and can be memoized for
reuse. In this manner, large-scale circuits are analyzed in
a fraction of the time and memory required by traditional
approaches, making design exploration more worthwhile.

As STARC can estimate the hardness assurance of
FPGA user circuits within minutes, STARC can also be
used for designers facing area and resource constraints.
Under these circumstances, it is possible to generate a
range of designs in BL-TMR with different balances of
unprotected cross-sections and resource utilization. In
this manner, STARC can help designers choose among
a range of possible design choices by quantifying the
remaining unprotected cross-section for each.

There are a few disadvantages to this approach. First,
since EDIF does not contain information about the
routing, information regarding placement and routing is
absent from the calculation. As routing can have a large
impact on the protected and unprotected cross-sections,
the routing cross-section is estimated statistically based
on an analysis we did of several designs using JBits
[21]. The point of the statistical model is to provide
a good estimate of the single-bit cross-section, as the
only way to fix unprotected configuration bits in the
routing is to mitigate the unprotected logic. Furthermore,
currently there is no way to assess placement-related
issues, such as MBU-induced TMR defeats. We are

currently working on a solution for this limitation for
designs that have completed the design flow. Second,
without input vector sets, logic masking cannot be taken
into account, and STARC estimates the worst case failure
rate. While this value may be lower than the value
determined by other tools [14], STARC provides a useful
lower bound on the circuit’s reliability.

A. STARC Overview

In the remaining half of this section, we will provide
an overview of STARC. The reliability of the circuit
is determined from dependency graphs of the circuit
that are created during a hierarchical exploration of
the circuit. By using the EDIF circuit representation,
the hierarchy in the circuit should be preserved. Since
designers tend to create complex circuits by creating less
complex components or sub-circuits, maintaining this
structure can be very useful in calculating the reliability.
In particular, STARC can determine the reliability of
a circuit hierarchically. STARC navigates through the
layers of the circuit hierarchy to determine the smallest
circuit component that needs to have it’s reliability
calculated. Once an entire layer of the circuit hierarchy
is completed, these values can be used to determine
the reliability of the next higher layer. This hierarchical
nature allows circuits to be examined at the highest
level of abstraction or the most minute level of detail.
STARC automatically determines the appropriate level
of the hierarchy that needs to be explored.

Since input vectors are not used in the reliability
calculation, the reliability is determined by component
type. For example, one component type might be a two-
bit adder. The first time a two-bit adder is found during
hierarchical exploration these three steps are executed:

1) a dependency graph is determined,

2) the reliability of the dependency graph is calcu-
lated, and

3) the reliability value of the dependency graph is
memoized.

The next time another two-bit adder is found in a design,
the memoized value is used, and the first two steps of the
process are eliminated. It is in this way the state space of
the circuit grows with circuit size, since the state space
is limited to the unique number of components in the
circuit. Even if a circuit has very little component reuse,
the state space will never grow larger than the number
of components in the circuit. Since the size of the state
space has a first order effect on the speed of computation,
STARC is able to analyze the reliability of a circuit
in polynomial time, instead of the exponential time
necessary for most traditional reliability tools. Therefore,

STARC should be able to compute the reliability of
circuits with thousands of components in the design in
a matter of minutes.

As stated above, during hierarchical exploration de-
pendency graphs are determined for each unique com-
ponent. For maximum re-use, dependency graphs for
each primary output at each level of the hierarchy is
determined. These dependency graphs indicate all of the
components that exist in the path between a particular
output and the reachable inputs. Since not all logic or
inputs are reachable from every output, this technique
removes unrelated logic from dependency graph and,
hence, the reliability calculation.

Once the dependency graph for an output is deter-
mined, the reliability can be calculated. In unmitigated
designs, the cross-section is the total area of the depen-
dency graph:

(1

where A(X) is the sensitive area of X (where X is
either a wire or a component) and C' = {Cy, ..., Cy, } is
the set of components that can be reached from output
wire O. STARC also applies a modular approach to the
fault model and the architectural model. Since reliability
is determined hierarchically in STARC, the only devices
that need to be pre-calculated are the primitives for the
given architecture. Figure 2 shows our methodology for
library characterization. The primitives for a hardware
platform are defined in an architectural model. Fault
models for transient and permanent defects are combined
with the architectural models to create the character-
ized primitive library. Traditional probability of failure
equations are also available to calculate the reliability
of defect-based architecture models. Our automation
framework is designed so that users can define primitive
libraries for their own architectural models or use our
models for basic logic and the Xilinx architecture. To be
used in our methodology, user-defined libraries have to
be characterized for specific fault models to define their
reliability.

In this manner, STARC was designed to be architec-
turally independent. While this paper focuses on reliabil-
ity as it relates to Xilinx FPGAs, STARC is modular in
nature and the Xilinx cross-section model is an input to
this system. The tool has also been used for probability
of failure calculations for nanoscale electronics based on
yield estimates. In the future, we would like to expand
into models for probability of failure and cross-section
models for structured application-specific integrated cir-
cuits (ASICs), as these devices are frequently being used

Environment User—Defined Yield

Jasic logic Xilinx ¥ ' t t
primitive primitive Lser— Transient Diefect
libracy library Definad Error Iaodel TWladel

! l | l l

| Architecture Model | | Fault Model |
| |
¥
Chamctenzead
Primitive Library

Fig. 2. Library Characterization

in space-based systems as well.

Finally, STARC was also designed to help designers
find problems in the application of TMR. For mitigated
circuits, the sensitive area is confined to the part of
the design that is not triplicated, as triplication will
mask errors as long as there is one voter for each
redundant module. STARC also checks to make certain
the modules have equivalent components. Any logical
elements that might be shared by two or more TMR
domains are considered unprotected cross-section, even
if the elements reside within one of the modules. STARC
also checks to make sure the feedback loops are properly
triplicated and cut. If persistent cross-section is found,
a warning is displayed to inform the designer that a
particular component has not had TMR applied correctly.

In all of these cases, STARC provides warnings and
information about the design to the designer. The output
of the tool provides the designer a list of sub-circuits that
are untriplicated, a quantity for the unprotected cross-
section, and warnings about potential single points of
failures from functionally nonequivalent modules and
logical constants. Since EDIF is tightly coupled to the
circuit design, the designer should be able to directly use
STARC’s output to find and fix the design flaws in the
user circuit.

V. CASE STUDY: TRADESPACE OF RELIABILITY
ISSUES UNDER AREA CONSTRAINTS

In this section we present a case study of two image
processing algorithms that use STARC to explore the
tradespace of reliability issues under an area-constrained
design process. The two image processing algorithms we
examined are an edge detection algorithm and a noise
filtering algorithm. The edge detection algorithm uses the
Sobel convolution masks [22] as the computational basis.
These convolution masks are well-matched to FPGA
implementation, since the multiplication can be reduced
to shifts. The noise filtering algorithm breaks the image
into a series of small windows. The pixel in the center
of the window is replaced with the minimum pixel value

TABLE 1
STARC RESULTS FOR TWO IMAGE PROCESSING ALGORITHMS

in the window. Both of these circuits are feed forward,
and, therefore, do not have error persistence issues. Since
both algorithms use nine eight-bit pixels as input, the
algorithms both use the same data input circuit.

Several implementations of these circuits were devel-
oped: without TMR, with full TMR, and two partial
TMR approaches. To avoid design issues with apply-
ing TMR, BL-TMR was used. It should be noted that
STARC has been modified to automatically recognize
designs that have been mitigated through BL-TMR.
Support for the Xilinx TMRTool is currently being
added. Logical constants were also extracted to input
pins. For the partial TMR approaches, we had BL-TMR
triplicate the logic in both implementations for both
algorithms and varied how the input and output signals
were handled. In the partial TMR 1 implementations we
had BL-TMR not triplicate any input or output signals,
and in the partial TMR 2 implementations we had BL-
TMR triplicate only the reset, logical constant and clock
input signals.

STARC was used to determine the unprotected cross-
section of all of the implementations, as shown in Table
I. The first thing to note from these values is that
applying TMR to just the design’s logic (partial TMR
1) provided little improvement for the noise filter and
actually increased the cross-section for the edge detec-
tion algorithm. When we looked through the STARC
results we found the large unprotected cross-section in
the partial TMR 1 versions were due to the unmitigated
signals. As Table I shows, all of the unprotected cross-
section for these implementations are in the routing net-
work, indicating that the logic was properly triplicated.
Since the triplicated logic has three times as many flip-
flops, the untriplicated clock, reset, and logical constant
trees now have to route to three times as many locations.
In a heavily pipelined design, like the edge detection
algorithm, this decision was disastrous. When we went
back to BL-TMR and chose to triplicate the logic and
the global signals, the unprotected cross-section for both

Design Implementation Total Unprotected | Unprotected | Number of Time to
Unprotected Logic Routing Components | Calculate
Cross-Section (bits) (bits) (sec)
(bits)
Edge Detection | No TMR 15,418 3,641 11,777 1,356 56
Partial TMR (1) 21,800 19 21,781 3,787 426
Partial TMR (2) 24 16 8 3,793 401
Full TMR 0 0 0 3,799 230
Noise Filter No TMR 14,914 4,522 10,392 1,603 95
Partial TMR (1) 14,332 19 14,313 4,273 785
Partial TMR (2) 24 16 8 4,279 565
Full TMR 0 0 0 4,285 309
TABLE I

STARC VALIDATION RESULTS FOR THE UNMITIGATED
IMPLEMENTATION OF TWO IMAGE PROCESSING ALGORITHMS

Design Total Unprotected | Unprotected
Unprotected Logic Routing
Cross-Section (bits) (bits)
(bits)

Edge Detection | 14,461 2,291 12,170

Noise Filter 9,507 1,462 8,045

designs was 99.8% smaller than the unprotected cross-
section in the unmitigated design. When full TMR is
applied to both algorithms, there was no unprotected
cross-section.

Finally, STARC was able to find the hardness assur-
ance issues that existed in the implementations without
TMR and with partial TMR. In both algorithms the
implementations without TMR used the device-provided
logical zeros and STARC correctly identified this as
a potential problem. Also, the implementation of the
two algorithms with partial TMR had input signals, a
voter, and input/output registers that were not triplicated.
STARC was able to find these untriplicated signals and
logic, report them, and properly calculate the cross-
section for them.

We have recently begun validation of the STARC
tool. Table II shows some results from fault injection of
the unmitigated implementations of the two image pro-
cessing algorithms. While the edge detection algorithm
is within 93.8% of the STARC-predicted cross-section,
the noise filtering algorithm is not as close at 63.8%.
When looking at the numbers closer, for both designs the
routing estimates look reasonable, but the logic is over-
estimated in both cases. We believe that the reason why
there is such a gap in the logic values is due to logical
masking on the fault injection hardware. In particular, we
found that the outputs of the edge detection algorithm are
much more sensitive to data changes than the noise filter.
In examining the execution times we found that the tool
was able to compete on average 12 components/second.

Note that the execution time tripled from the unmitigated
implementations to the mitigated implementations. As
BL-TMR flattens the circuit hierarchy while applying
TMR, the entire circuit’s state space must be analyzed
to determine the reliability of the circuit.

VI. CONCLUSION

In summary, we have presented a number of hardness
assurance pitfalls with TMR-protected designs for the
Xilinx devices, including redundant modules that share
logic, the inability to fully triplicate designs, and device-
provided logical constants. We have also introduced
a tool, called the Scalable Tool for the Analysis of
Reliable Circuits (STARC), that automates the process
for identifying hardness assurance issues with TMR-
protected circuits for Xilinx FPGAs as well as estimating
their unprotected SEU cross-sections. As an illustration,
we used STARC to analyze four implementations of
two different image processing algorithms with different
approaches to TMR. While we found that full TMR
provided a 100% reduction in cross-section, triplicating
only the internal logic either barely reduced or increased
the cross-section of the original design. We found that
not triplicating the reset and clock signals for TMR-
protected logic had a profound effect on the cross-
section, and that triplicating just those two signals with
the logic could reduce the unprotected cross-section by
99.8%.

REFERENCES

[1] C. Carmichael, “Triple Module Redundancy Design Techniques
for Virtex FPGAs,” Xilinx Corporation, Tech. Rep., November
1, 2001, XAPP197 (v1.0).

[2] E Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis,
“A Fault Injection Analysis of Virtex FPGA TMR Design
Methodology,” in Proceedings of the 6th European Conference
on Radiation and its Effects on Components and Systems
(RADECS 2001), 2001.

[3] N.Rollins, M. Wirthlin, M. Caffrey, and P. Graham, “Evaluating
TMR Techniques in the Presence of Single Event Upsets,” in
Proceedings fo the 6th Annual International Conference on Mil-
itary and Aerospace Programmable Logic Devices (MAPLD).
Washington, D.C.: NASA Office of Logic Design, AIAA,
September 2003, p. P63.

[4] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and
K. Lundgreen, “Domain Crossing Errors: Limitations on Single
Device Triple-Modular Redundancy Circuits in Xilinx FPGAs,”
IEEE Transactions on Nuclear Science, Vol. 54, No. 6, pp. 2037
— 43, 2007.

[5S] L. Sterpone, M. Violante, R. H. Sorensen, D. Merodio,
F. Sturesson, R. Weigand, and S. Mattsson, “Experimental
Validation of a Tool for Predicting the Effects of Soft Errors
in SRAM-Based FPGASs,” Transactions on Nuclear Science,
Vol. 54, No. 6, pp. 2576-2583, 2007.

[6] J. A. Abraham, “A Combinatorial Solution to the Reliability of
Interwoven Redundant Logic Networks,” IEEE Transactions on
Computers, Vol. 24, No. 6, pp. 578-584, May 1975.

(7]

(8]

(9]

(10]

(1]

(12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

(21]
(22]

J. A. Abraham and D. P. Siewiorek, “An Algorithm for the
Accurate Reliability Evaluation of Triple Modular Redundancy
Networks,” IEEE Transactions on Computers, Vol. 23, No. 7,
pp- 682-692, July 1974.

C. Hirel, R. Sahner, X. Zang, and K. Trivedi, “Reliability and
Performability Using SHARPE 2000,” in 11" Int’l Conf. on
Computer Performance Evaluation: Modeling Techniques and
Tools, Vol. 1786, 2000, pp. 345-349.

E. V. Jensen, Bayesian Networks and Decision Graphs.
York: Springer-Verlag, 2001.

S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P.
Hayes, “Accurate Reliability Evaluation and Enhancement via
Probabilistic Transfer Matrices,” in Design, Automation and
Test in Europe (DATE’05), Vol. 1. New York, NY, USA: ACM
Press, 2005, pp. 282-287.

G. Norman, D. Parker, M. Kwiatkowska, and S. Shukla, “Eval-
uating the Reliability of NAND Multiplexing with PRISM,”
IEEE Transactions on CAD, Vol. 24, No. 10, pp. 1629-1637,
2005.

D. Bhaduri, S. K. Shukla, P. S. Graham, and M. B. Gokhale,
“Reliability Analysis of Large Circuits Using Scalable Tech-
niques and Tools,” IEEE Transactions on Circuits and Systems
- I: Fundamental Theory and Applications, Vol. 54, No. 11, pp.
2447 — 60, November 2007.

D. Bhaduri, S. K. Shukla, P. Graham, and M. Gokhale,
“Comparing Reliability-Redundancy Trade-offs for Two Von
Neumann Multiplexing Architectures,” IEEE Transactions on
Nanotechnology, 2006.

D. Bhaduri and S. Shukla, “NANOLAB—A Tool for Evalu-
ating Reliability of Defect-Tolerant Nanoarchitectures,” IEEE
Transactions on Nanotechnology, Vol. 4, No. 4, pp. 381-394,
2005.

D. Bhaduri and S. Shukla, “NANOPRISM: A Tool for
Evaluating Granularity vs. Reliability Trade-Offs in Nano-
Architectures,” in /4th GLSVLSI. Boston, MA: ACM, April
2004, pp. 109-112.

M. Baze, S. Buchner, W. Bartholet, and T. Dao, “An SEU
Analysis Approach for Error Propagation in Digital VLSI
CMOS ASICs,” IEEE Transactions on Nuclear Science, Vol. 42,
No. 6, pp. 1863-9, December 1995.

K. Morgan, M. Caffrey, P. Graham, E. Johnson, B. Pratt, and
M. Wirthlin, “SEU-Induced Persistent Error Propagation in
FPGAS,” IEEE Transactions on Nuclear Science, Vol. 52, No. 6,
pp. 2438 — 45, 2005.

“Xilinx TMRTool User Guide,” on
http://www.xilinx.com/products/milaero/ug156.pdf.
H. Quinn, D. Bhaduri, C. Teuscher, P. Graham, and M. Gohkale,
“The STAR Systems Toolset for Analyzing Reconfigurable Sys-
tem Cross-Section,” in Military and Aerospace Programmable
Logic Devices, 2006, p. 162.

H. Quinn, D. Bhaduri, C. Teuscher, P. Graham, and M. Gohkale,
“The STARC Truth: Analyzing Reconfigurable Supercomputing
Reliability,” in Field-Programmable Custom Computing Ma-
chines, 2005.

“http://www.xilinx.com/labs/projects/jbits/.”

A. K. Jain, Fundamentals of Digital Image Processing. Pren-
tice Hall Information and System Sciences Series, 1989.

New

web:

