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A Test Methodology for Determining
Space-Readiness of Xilinx SRAM-based FPGA

Devices and Designs
Heather Quinn, Paul Graham, Michael Wirthlin, Brian Pratt, Keith Morgan, Michael Caffrey, and Jim Krone

Abstract - Using reconfigurable, static random-access memory
(SRAM) based field-programmable gate arrays (FPGAs) for space-
based computation has been a very active area of research for the
past decade. Because these commercially-available devices are only
radiation-tolerant in terms of total ionizing dose and single-event
latchup, these devices must be qualified for other types of single-event
effects to be used in spacecraft. Furthermore, mission requirements
often dictate the need to do radiation experiments on the FPGA user
circuit. Because both the circuit and the circuit’s state are stored
in memory that is susceptible to single-event upsets, both could be
altered by the harsh space radiation environment. Both the circuit
and the circuit’s state can be protected by triple-modular redundancy
(TMR), but applying TMR to FPGA user designs is often an error-
prone process. Faulty application of TMR could cause the FPGA
user circuit to output incorrect data. This paper will describe both
device-level static testing and user circuit dynamic testing, including
a three-tiered methodology for testing FPGA user designs for space-
readiness.

Keywords: Field programmable gate arrays, Reliability testing,
Reliability estimation, Failure analysis, Space technology

I. Introduction
Field-programmable gate array (FPGA) technology, such

as the Xilinx Virtex family of devices, has made inroads
into space-based platforms over the past decade [1], [2].
These devices have programmable logic and routing that
are used to implement user circuits and are well-suited for
the digital signal processing algorithms that are often used
in space. Unlike radiation-hardened anti-fuse FPGAs that
can only be programmed once, radiation-tolerant devices can
be programmed an unlimited number of times. The ability
to reconfigure the device to implement new circuits makes
SRAM FPGAs attractive to the space community. Unlike
other hardware devices that have the circuit fabricated into the
silicon, new circuits can be implemented on an FPGA while in
orbit. Therefore, reconfiguration can extend the usable lifetime
of the system by changing the FPGA’s user circuit to meet
changing mission and science goals. We have also found that
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reconfiguration opens up many avenues for pre-launch testing
of the user circuits.

Unfortunately, the technology used in these SRAM FPGAs
to implement the user circuit is susceptible to radiation-
induced faults, called single-event upsets (SEUs), that can
affect the programmable logic and routing or affect the entire
device. To adequately qualify an SRAM-based FPGA for
space, the device is tested both statically and dynamically in
a cyclotron so that radiation-induced faults can be identified,
characterized and quantified. Static radiation tests involve test-
ing the entire device to determine the sensitivity of the device
to radiation-induced faults, which is called the cross-section.
This information is used to determine the error rate of the
device while on orbit. Dynamic testing measures the sensitivity
of an FPGA design to radiation-induced faults. In this case,
input and output test vectors are used to determine whether
radiation-induced faults cause the design to output erroneous
data. The results of dynamic testing is used to determine
whether a particular design meets mission requirements.

In this paper we will present methodologies for both static
and dynamic testing. In Section II we provide information
that affects both static and dynamic testing. In Section III we
will present a methodology for testing SRAM-based FPGA
devices statically that will allow the tester to determine the
sensitivity of the device to radiation-induced upsets. In Section
IV we will present a three-tiered methodology that uses all of
these technologies for discovering design flaws in an FPGA
user circuit before launch. Section IV is a continuation of
the author’s paper at AUTOTESTCON 2008 [3]. In both
Section III and IV we will present results from using these
methodologies on Xilinx Virtex family devices. Given the
disparate nature of these topics, the related work for these
topics will be covered in the individual sections.

II. Background on Radiation Testing
All electronic devices that will be used in spacecrafts need

to be qualified for the space environment, which includes
radiation, thermal, and mechanical testing. There are a variety
of references and standards for qualifying devices for space
usage. The papers [4], [5] will be useful for a discussion of
thermal design and testing. For radiation testing, readers will
find the “Handbook of Radiation Effects” [6], EIA/JEDEC
standards 57 and 89 helpful. Given the scope of the paper we
will focus only on radiation testing.
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The space environment has a very rich radiation envi-
ronment of electrons, protons and heavy ions. Each orbit
is characterized by an ion spectrum, where each ion has a
corresponding energy spectrum. Each ion also affect semi-
conductor devices in different ways. Electrons and protons
cause the switching characteristics of transistors to degrade,
which are called dose-related effects. Protons and heavy ions
cause single-event effects (SEEs). While Xilinx SRAM-based
FPGAs have not exhibited dose-related effects, some types of
SEEs can make these parts challenging to use in space.

SEEs is an umbrella term that covers several different types
of radiation effects. Most commonly, spacecraft designers
are concerned with single-event latchup (SEL), single-event
transients (SETs), single-event upsets (SEUs), and single-event
functional interrupts (SEFIs). While there are a handful of
SEE types that can damage a device, SEL is the predominant
concern in this category. The remaining three SEE mechanisms
discussed in this paper are not destructive, but can make
fault-tolerant computation challenging. These phenomena are
discussed below.

Due to the destructive effects of SEL or latchup, spacecraft
designers often disqualify devices that latchup from space-
crafts. SEL is a radiation-induced version of latchup that
plagues complementary metal-oxide-semiconductor (CMOS)
devices and can be destructive to SEL-sensitive devices. Un-
like most SRAM-based FPGAs, Xilinx has published several
reports verifying latchup-immunity [7], [8], which have made
them the preferred choice for space usage.

Radiation-induced faults from SEUs, which are also known
as bitflips or upsets, cause memory bits to change value
from either 0 to 1 or 1 to 0. SEUs are the primary concern
for SRAM-based FPGAs in space. SEUs in FPGAs have
been shown to cause problems in the programmable logic,
the programmable routing, and even device control [9], [10].
SEUs that affect the device control are considered single-event
functional interrupts (SEFIs). SEFIs on orbit can have serious
consequences, as the device usually needs to be completely
reprogrammed and the calculation restarted to recover from
many SEFIs. In practice, SEFI error rates are very low. More
concerning, SEUs can change circuit functionality and circuit
state in the FPGA user circuit.

In comparison, SETs (or transients) are less troublesome.
Transients are common in many semiconductor circuits. With
this phenomena the ionizing particle causes a transient current
state. If this transient state can propagate to a register during
the setup and hold time (called the window of vulnerability),
the transient will be latched (called a latched SET) and the
intermediate data value could be corrupted. For modern CMOS
devices with fast clock speeds, latched SETs have become
increasingly more common and distinguishing transients from
legitimate signals is challenging. Unlike SEUs, latched SETs
have a radiation-induced error rate that is dependent on the
circuit’s operating speed as faster clock speeds are more likely
to latch SETs than slower clock speeds. For SRAM-based
FPGAs, where the user flip-flops are outnumbered by several
orders of magnitude by the configuration memory, the current
understanding is that SETs are possible, but observability of
SETs is hindered by the number of SEUs.

Fig. 1. Test Methodology for Complete Capture Test System

There are also a number of compound reliability effects that
could affect the sensitivity of the device to radiation, including
temperature and voltage. In particular, lowering voltages has
been shown to increase the cross-section in SRAM [11],
[12]. Temperature-related reliability problems can also be
easily misinterpreted as radiation-induced faults. We test all
devices at nominal temperature and voltages so that we have
a consistent basis of comparison over the different devices.

III. Static Testing
In this section we describe how we have done static testing

of the Xilinx Virtex devices. This section covers our method-
ology toward testing, our analysis methods, and highlights of
our results. This section concludes with a short discussion of
how these results are used in determining the error rate for
these devices in space.

III.A Methodology
Static testing of the device provides a basis for determining

the device’s on-orbit error rate and the device’s sensitivity to
SEUs and SEFIs. We start by first experimentally determining
the proton and heavy ion static cross-sections. The basic
methodology for static radiation experiments of electronic de-
vices involves irradiating the device and counting the number
of radiation-induced faults. The equation for determining the
device cross-section is:

σdevice = events
fluence×cos(θ) (1)

where fluence is the measure of the number of ions that
irradiated the device in a set a time, θ is the angle of the test
fixture to the beam, and events is the count of the radiation-
induced faults. Some people prefer to use the bit cross-section,
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Fig. 2. Test Methodology for Continuous Capture Test System

which is determined by taking the value from Equation 1 and
dividing it by the number of bits in the device.

This basic methodology is implemented in one of two
ways: complete capture and continuous capture systems. The
flowcharts for these two methodologies are shown in Figures
1 and 2. There are advantages and disadvantages to both
methodologies. The complete capture has the advantages of
being able to easily determine the amount of fluence per
sample and the easiest to implement, but involves a lot of
time-consuming human interaction per sample. The continuous
capture system records several samples for each beam run
with far less human interaction, but determining the amount of
fluence per sample is more complicated. We have found that
the use of a custom test fixture that implements the continuous
capture test methodology has been very useful in quickly
determining the static cross-section.

III.A.1 Test Fixtures

An important aspect of testing devices are the test fixtures.
The fixture consists of both hardware and software compo-
nents. The hardware test fixture provides support for reading
(readback) and writing (programming) the configuration data
in the SRAM-based FPGA. The software test fixture imple-
ments the FPGA-specific part of the test methodology, includ-
ing controlling programming and reading back the FPGA. In
this section, we will discuss both the hardware and software
aspects of test fixtures.

There are a number of hardware test fixtures that organi-
zations have built to test FPGAs [8], [13], [14]. While using
the Xilinx AFX series development boards is possible, many
organizations have been designing their own boards. The most
common design for these boards is to use one or more FPGAs
to control the FPGA being irradiated. Test fixtures also differ

Fig. 3. Hardware Test Fixture for the Xilinx Virtex-5 Device

in how the FPGA is programmed and readback, as there are
two ports available on the Xilinx Virtex parts. The JTAG port,
while an industry standard, is the slowest port. As the other
port, SelectMAP, is significantly faster than the JTAG port, it
is the most frequently used port for custom test fixtures.

The hardware test fixture the authors used in this paper for
the Virtex-5 results is shown in Fig. 3, and uses two Xilinx
AFX series development boards (one Virtex-II and one Virtex-
5) biased nominally. The Virtex-II board communicates to the
host computer through a USB card and controls the Virtex-5
board during irradiation. A similar test fixture was built for the
Virtex-4 devices by using the Xilinx AFX series development
boards for the Virtex-4. The Virtex-II device can be tested by
using only the one Virtex-II AFX development board. As this
hardware test fixture is very heavily software controlled, we
have found this setup modifies very quickly to new devices.

The software test fixture at a minimum must program and
readback the FPGA being irradiated. Often times, the software
test fixture will also difference the readback data with the
programming data to determine the locations of SEUs in the
readback data. There is a commercially available tool from
Xilinx, called iMPACT, that can do the programming, the
reading back, and the differencing. Unfortunately, this program
was only designed to work with the JTAG port. Because the
reading back and differencing takes so long, this software can
only be used effectively for complete capture test methodolo-
gies. Due to this limitation, most organizations develop custom
software. The hardware test fixture discussed above uses
custom software that performs programming, differencing, and
readback, as well as keeping the GUI updated with minimal
statistics to help the testers determine whether the test fixture
remains operational. The FPGA is completely reprogrammed
and the differential bitstream saved to hard drive every second
in this scheme, which allows us to test continuously at high
fluences without accumulating too many upsets per readback.
We can collect approximately 3,600 differential readbacks per
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Fig. 4. θ and φ Angles Relative to Device

hour. Minimal statistics are taken in real time while irradiating
the part as a state of health check.

As a final note on test fixtures, developing test fixtures that
can record and identify SEFIs is very difficult. Not only do
most SEFIs make the device being irradiated completely non-
functional, but the information that can be gained from the
irradiated device is very similar for many of the different
types of SEFI. Often times, the only way a tester knows that a
SEFI has occurred on the device is that the test fixture cannot
establish communication with the irradiated device or the test
fixture crashes. The test fixtures used in [8], [13] currently
have the best methodologies for testing FPGAs for SEFIs.

III.A.2 Angular Testing

Often times, testers will angle the text fixture to the beam
during testing. For older electronic devices, angular testing was
done as a way to artificially increase the beam energy, thereby
increasing the number of discrete data points that could be
collected. Paradoxically, as ions move through Silicon the
energy of the ion will increase until the stopping range is met
at the Bragg’s peak. The deposited energy beyond the Bragg’s
peak of the ion is zero. Therefore, one way to increase the ion’s
energy is to increase the ion’s path through the device, which
can be done by angling the device to the beam. For angular
testing, the ions’ paths between the surface of the device and
the active volume of the semiconductor is:

distanceeffective = distancenormal × cos(θ) (2)

where distancenormal is the length between the surface of the
device and the active volume of the device, and θ is the angle
of the test fixture to the beam. This increase in energy is:

Energyeffective = Energynormal × cos(θ) (3)

where Energynormal is the energy of the beam at a normal
incidence and θ is the angle of the test fixture to the beam.
Care needs to be taken with angular testing to make certain
that ions are not shadowed by the device’s socket or that the
distanceangle does not exceed the ion’s range. In both cases,
the data will not be consistent with the rest of the data set.

We have found that rotating Xilinx SRAM-based FPGAs in
the beam provides an interesting data set. Unlike traditional
electronics devices, these devices are laid out heterogeneously
with many different types of memory cells. Therefore, rotating

the device creates an effect that cannot be explained by only
the increase in effective energy. To study these effects, we
rotated the device in two different directions, as shown in Fig.
4, to change the beam’s angle of incidence. Since the device is
columnar in nature, we tested the response when the columns
were upright (θ = 0) and when the columns were on their
side (θ = 90). Next the beam’s angle of incidence (φ) was
changed by slanting the device relative to the beam. Several
different φ’s were tested for both θ’s, to get an idea of how
the angular effects changed the radiation characteristics.

III.A.3 Multiple-bit Upset Testing

We are particularly interested in the role of multiple-bit up-
sets (MBUs) in these devices. MBUs are caused when a single
ionizing particle causes multiple bits to change values. For
TMR-protected designs, MBUs often violate the assumption
that only one error exists in the system at a time and have been
proven to cause TMR defeats in the Virtex-II [15]. Therefore,
we often analyze our static data for MBUs.

We have found that it is possible to create MBUs from
coincident single-bit upsets (SBUs) if the fluence per sample
is too high. As coincident SBUs are indistinguishable from
MBUs, limiting their ability to contaminate a data set is
necessary for MBU analysis. To determine the quality of our
data collection procedures, we have looked at three ways
to determine the rate of coincident SBUs in the data set:
shape analysis, statistical analysis, and Monte Carlo analysis.
The first attempt at determining and potentially removing
coincident SBUs from our data sets focused on analyzing the
MBU shapes under the assumption that coincident SBUs were
more likely to create “irregularly” shaped MBUs. Analysis of
data sets with a low likelihood of having coincident SBUs
showed that some of the “irregularly” shaped MBUs were,
in fact, common. Therefore, we have not found it possible to
remove coincident SBUs from data sets by shape.

To this end, we try to bound the amount of coincident
SBUs through statistical and Monte Carlo analysis. Rigorous
statistical analysis of coincident SBUs is difficult given the
prevalence of naturally created MBUs and the complexity of
the problem. As a worst case analysis, we assume that all of
the upsets in a readback are SBUs and try to determine the
percentage of 2-bit MBUs that are from coincident SBUs. If
the first ion upsets location L0, the probability that the second
ion upsets a bit in the adjacency neighborhood of L0 is

P (CS1|UL0) = 8
N (4)

As there are N combinations of L0 on an N -bit device, the
probability of a coincident SBU on the second upset is:

P (CS1) = P (CS1|UL0)P (UL0)) (5)

= N(
8
N

1
N

) (6)

=
8
N

(7)

For three upsets, the probability expands to:
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P (CS2) = P (CS1) + P (CS2|UL0..1)P ( ¯CS1)P (UL0))(8)

=
8
N

+ N(
16
N

)(
N − 8

N
)(

1
N

) (9)

Similar reasoning is possible until the general equation for an
upper bound for k upsets, where one upset is coincident SBU,
is arrived upon:

P (CSk) = P (CS1) + P (CS2) + · · ·+ P (CSk) (10)

=
8
N

k−1∑
i=0

i

i−1∏
j=0

(1− 8j

N
) (11)

<
8k

N

k−1∑
i=0

i(1− 8
N

)i (12)

Clearly, from this equation, as the number of upsets k per read-
back increases, the percentage of coincident SBU increases.

Given the complexity of this equation, we have found that
Monte Carlo simulations are very useful. For these simula-
tions, we generate m random upsets for the bitstream, then an-
alyze the random upsets using our analysis software described
in Section III.B.2 to determine whether co-incident SBUs have
created MBUs. We generate and analyze millions of samples
in this manner for each device. These simulations have shown
that the worst case statistical analysis was approximately a
factor of two to ten high than Monte Carlo simulations, but
still quite reasonable.

One thing that is hard to reconcile with the probability of
coincident SBUs is how to adjust the beam in accordance
to MBU rates. We have found there is a correlation of the
ion’s energy and the angle of the beam to the likelihood of
MBUs. Therefore, as the energy and the angle increase, the
likelihood that an MBU occurs increases and the probability
of a coincident SBU is less important within reason. For
low energy, normal incidence testing it is more necessary to
limit the number of upsets per sample than for higher energy,
angular data sets.

III.A.4 Micro-SEFIs

One final methodology concern is a not-completely under-
stood phenomenon that affects the Xilinx Virtex Family parts,
which we call the micro-SEFI for lack of better terminology.
What appears to be happening in the micro-SEFI is that some
number of programming bits are locally reconfigured as if
the configuration control logic has been upset. The bits that
are upset present in the analysis as unusually large MBUs
and can wreck havoc on analysis, which will be discussed
in greater detail in the next section. Since this phenomena is
certainly not an actual MBU and likely not caused by an SEU
in the programming data, we eliminate these samples from
the data set. To simplify data cleansing, we test either with
many more or many less upsets per readback than present
in the micro-SEFI so that the micro-SEFI-contaminated data
samples can be easily eliminated. For example, if the micro-
SEFI presents with approximately 300 upsets per sample, then
we test at either greater than 500 upsets per sample or less than

Fig. 5. Entire Set of Samples for One Run on the TAMU 15 MeV/u Argon
Beam

Fig. 6. Highlighting Jackknifing possibilities in the Set of Samples for One
Run on the TAMU 15 MeV/u Argon Beam

100 upset per readback. To minimize problems with both the
micro-SEFIs and coincident SBUs, we recommend testing at
less than 100 upsets per readback.

III.B Analysis
The analysis of our data sets takes three distinct phases.

First of all, data sets must be cleansed from micro-SEFIs
and SEFIs. Second, analysis of the data correlates upsets to
physical locations to determine the percentage of MBUs and
distribution of upsets by memory cell type. Finally, all of the
data sets are combined to create plots of the sensitivity by
energy.

III.B.1 Data Cleansing

Once the data was collected, the data needs to be cleansed
to remove both the micro-SEFI-contaminated and the SEFI-
contaminated data sets. An entire run of data taken on our
continuous capture test system for the Xilinx Virtex-5 device
at Texas A&M University’s cyclotron for 15 MeV/u Argon is
shown in Figure 5. Eliminating SEFI-contaminated data sam-
ples is simple, because the number of upsets is significantly
greater than the average number of upsets for a sample. In
Figure 6, the SEFIs have been removed from the data set,
but the micro-SEFIs remain in the data set. In this figure, it
is fairly easy to see the micro-SEFI data points as they have
far more upsets per sample than the rest of the samples. In
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Fig. 7. Set of Samples for One Run on the TAMU 15 MeV/u Argon Beam
After Jackknifing

Figure 6 these data points are boxed in dark gray. The data
in the lighter gray box are suspect data that could either be
eliminated or kept based on the testers’ desires.

Removing the micro-SEFI-contaminated samples statisti-
cally is very difficult, and removing micro-SEFIs by hand
is time-consuming. While originally a running average was
used to determine whether samples should be eliminated, we
found that a custom jackknifing algorithm was more useful.
The beam fluctuations due to the flux drifting and the Poisson
statistics that determine the arrival of upsets meant that the
running average either had too small or too large of a standard
deviation. The result was that either nearly all of the data was
eliminated or none of the data was eliminated. As jackknifing
algorithms look at small, contiguous windows of data to de-
termine whether a statistical outlier exists in the window, this
methodology worked better with the beam fluctuations [16].
Some experimentation was necessary to determine optimal
window size, as the prevalence of micro-SEFIs has increased
for each generation of device. Also, we found it advantageous
to accept all of the data from window when the jackknifed
standard deviation was below ten upsets. Higher standard
deviations often indicated statistical outliers existed within the
window.

The jackknifed data set is shown in Figure 7. One can
see that all of the micro-SEFIs have been removed. Some
of the data in the middle group was accepted. In particular,
the samples from the beam variation around the 800th sample
were kept. Since that cluster of potentially bad data would
be processed in the same window, removing the potentially
bad data through jackknifing is impossible. Since there is no
way to prove from just the number of upsets that the data
is bad, the data is accepted. If the data turns out to have
other characteristics indicating data corruption, the samples
will be removed by the second phase of analysis. As it stands,
the initial run had 1264 samples, 32 samples were removed
through jackknifing, and 1232 samples remained. Therefore,
jackknifing removed only 2.5% of the total data set and
removed 100% of all of the micro-SEFIs.

Fig. 8. Physical Layout for Virtex-II

(a) Upset Adjacency
Neighborhood

(b) MBU of Three Upset
Bits

Fig. 9. Upset Adjacencies and MBUs

III.B.2 Physical Correlation and Analysis

After jackknifing the data, the data set can be analyzed.
We analyze each sample separately and then aggregate the
samples for one beam run into one data point. Combining
data from separate beam runs is not recommended, although
it is always possible to average data points together. Data from
separate sources, energies or angles should always be analyzed
as separate data points. In the next section, there is a discussion
of how to combine data points into graphs.

The first step of analyzing the data is to translate the upset
patterns from the readback data to the physical layout of the
programming data. We use the physical layout to classify
adjacent upset bits and their affected resources. We classify
a bit as adjacent to another if it lies within one of the eight
neighboring memory cells surrounding that bit. Figure 9(a)
illustrates the adjacency neighborhood used. Adjacent upsets
are classified as MBUs. In Figure 9(b) three upset bits are
grouped together in a single MBU. In this way, maximally
sized MBUs are found to give an understanding of the size of
MBU events.

The location of each SBU and MBU is recorded to deter-
mine what FPGA resources are affected and the frequency
of SBUs and MBUs by memory cell type. Figure 8 shows a
block diagram of the Virtex-II Family. This layout is similar
to the layout for the other families tested. There are many
different types of memory cells in these devices. We have
broken our analysis into five types of resources: input/output
blocks (IOBs), configurable logic blocks (CLBs), BlockRAM
(BRAM), BlockRAM interconnect (BRAMi), and digital sig-
nal processing (DSP) resources. We have found that in the
newer devices the cross-sections for each of these resources
is unique. This type of information could play an important
role in determining how a designer mitigates specific resource
types.

6



1569107296

Table 1. Xilinx Parts Tested

Family Part Config. CLBs Block IOB
Bits RAM Pads

(Kb)
Virtex XCV300 1,751,808 1,536 64 316

XCV1000 6,127,744 6,144 128 512
Virtex-II XC2V250 1,593,632 384 432 200

XC2V1000 4,082,592 1,280 720 432
Virtex-II XC2VP40 15,868,192 19,392 3,456 804
Pro
Virtex-4 XC4VLX25 7,819,520 24,192 1,296 448
Virtex-5 XC5VLX50 13,579,200 7,200 480 560

For each data point, it is also necessary to determine the
amount of error in the data point. For cross-section data the
error is often expressed as:

σerror = ± (events)1/2

fluence × cos(θ)
(13)

where fluence is the measure of the number of ions that
irradiated the device in a set a time, θ is the angle of the test
fixture to the beam, and events is the count of the radiation-
induced faults. There can be significant error introduced by
a number of sources — bad beam dosimetry, contaminants
in the beam line and systematic test fixture error. Therefore,
within the radiation effects field, even meticulously collected
data can be off by a factor of two.

III.B.3 Combining Test Results

After each data set is analyzed, the data is combined to
give a view of how energy effects the sensitivity of the device
to SEUs. Proton-based results and heavy-ion-based results
are separated into different graphs. We have also found that
separating angular data from normal-incidence data is often
helpful, as angular data can often be confusing when only
represented as an increase in effective energy. By standard,
data sets are plotted in log-normal graphs. The data is tra-
ditionally fitted to a Weibull curve. This fitting can be done
either through Matlab or by hand using a least-squared fit.

When plotted, two interesting characteristics of cross-
sections becomes apparent: an onset threshold and a saturation
cross-section. The onset threshold indicates the lowest energy
or energy equivalent needed to cause an SEU or a SEFI,
which can be less than 1 MeV-cm2/mg for heavy ions. The
saturation cross-section indicates the maximum sensitivity to
the radiation source and often does not saturate in modern
devices due to the presence of multiple-bit upsets [17].

III.C Static Test Results
In this section, we will present data from a number of

tests that we have performed using this methodology. The
parts we have tested are listed in Table 1. Los Alamos Na-
tional Laboratory and the Xilinx Radiation Testing Consortium
(XRTC) have tested these parts extensively in both proton and
heavy ion radiation. Information regarding energies, angles
and fluence can be found in [17], [18]. To determine the quality
of our data collection procedures, we estimated the probability

of a coincident two-bit upsets in our data sets using the Monte
Carlo technique described in Section III.A.3. Table 2 shows
the worst case probability that the readback data will have
coincident SBUs based on the worst case number of upset
bits per device in each device’s data set.

Table 2. Worst Case Percentage of Coincident SBUs in the Data

Family Worst Case Worst Case
Coincident SBUs upsets/device
Proton Test Data

Virtex 0.0006% 0.0002%
Virtex-II 0.0298% 0.0075%
Virtex-II Pro 0.0277% 0.0069%
Virtex-4 0.0379% 0.0095%
Virtex-5 0.0005% 0.0001%

Heavy Ion Test Data
Virtex 5.4077% 1.283%
Virtex-II 5.8943% 1.577%
Virtex-II Pro 1.1697% 0.289%
Virtex-4 0.0472% 0.0098%
Virtex-5 0.0110% 0.0022%

Fig. 10. Heavy Ion Bit Cross Sections for Virtex Family Devices [17].

Table 3. Bit Cross-Section for SEUs for Protons for Several Xilinx FPGAs
[17], [18]

Device Energy σbit

(MeV) (cm2/bit)
XCV1000 63.3 1.32× 10−14 ± 2.69× 10−17

XC2V1000 63.3 2.10× 10−14 ± 4.64× 10−17

XC4VLX25 63.3 1.08× 10−14 ± 2.71× 10−17

XC5VLX50 65.0 7.57× 10−14 ± 1.35× 10−15

XC5VLX50 200.0 1.07× 10−13 ± 5.37× 10−16

Table 3 has a list of SEU bit cross-sections for proton and
Figure 10 shows the SEU bit cross-sections for heavy ions for
Virtex family devices. Note that the sensitivity to heavy ions is
five to seven orders of magnitude larger than protons. Each one
of these devices have been designed with progressively smaller
transistor geometries, but there is not much difference between
any of the cross-section values. While shrinking the transistor
size reduces the likelihood of striking a transistor with ionizing
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radiation, shrinking the transistors also reduces critical charge
necessary for changing a value. Therefore, shrinking transistor
sizes will not necessarily decrease the sensitivity of the device
to radiation.

Table 4. Frequency of Upset Events and Percent of Total Events Induced by
Proton Radiation (63.3 and 65 MeV) for Five Xilinx FPGAs

Family Total 1-Bit 2-Bit 3-Bit 4-Bit
Events Events Events Events Events

Virtex 241,166 241,070 96 0 0
(99.96%) (0.04%) (0%) (0%)

Virtex-II 541,823 523,280 6,293 56 3
(98.42%) (1.16%) (0.01%) (0.001%)

Virtex-II 10,430 10,292 136 2 0
Pro (98.68%) (1.30%) (0.02%) (0%)
Virtex-4 152,577 147,902 4,567 78 8

(96.44%) (2.99%) (0.05%) (0.005%)
Virtex-5 2,963 2,792 161 9 1
(65 MeV) (94.23%) (5.43%) (0.30%) (0.03%)
Virtex-5 35,324 31,741 3,105 325 110
(200 MeV) (89.86%) (8.79%) (0.92%) (0.43%)

Fig. 11. Percent of MBU Events Out of All Events Induced by Heavy Ion
Radiation for Four Xilinx FPGAs

Table 4 lists the frequency of MBUs in protons and Figure
11 shows the frequency of MBUs for heavy ions for Virtex
family devices. Both of the proton and heavy ion data sets
have shown that MBUs have become more frequent in the
newer devices. Figure 11 also shows how MBU frequency
increases with energy. Figures 12 and 13, show how the size
of the MBUs also increase with size as energy increases.
Furthermore, Figure 14 shows how the MBUs increase as
the device is rotated. Figure 15 shows how the bit cross-
section changes with angle. Even though the effective energy
of the beam increases with angle, most of the data points
show a decrease in the bit cross-section. If plotted with
normal incidence data points, these data points could be very
confusing.

Finally, Figures 16 and 17 show a distribution of events
analyzed by the affected resource. The first bar in both
figures shows the percentage of space each resource takes

Fig. 12. Distribution of MBU Sizes in Heavy Ion for the Virtex-4

Fig. 13. Distribution of MBU Sizes in Heavy Ion for the Virtex-5

on the device. In Figure 16, one should note that as the
energy increases more of the events occur in the BRAM, even
though these memory cells comprise approximately 30% of the
device. In testing we found that the saturation cross-section of
the BRAM was the largest of all resources, which is causing
this resource to dominant the events in the saturation region.
The opposite is happening in Figure 17 with the Virtex-5,
though. In the saturation region the events are almost evenly
distributed with their percentage of space on the device. In
testing we found that the different resources had different
onset thresholds, but that the saturation cross-sections were
not that much dissimilar. Furthermore, unlike previous devices,

Fig. 14. Percentage of MBUs by Angle in Heavy Ion for the Virtex-5
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Fig. 15. Bit Cross-Section by Angle in Heavy Ion for the Virtex-5

Fig. 16. Distribution of Events by Resource in Heavy Ion for the Virtex-4

the memory cells devoted to routing for all resources were
standardized. Due to our choice of categorization of memory
cells, this type of information is obscured. As these categories
are somewhat arbitrary, in the future we can change the
analysis software to categorize the resources differently.

III.D Error Rates in Space
Essentially every orbital scenario is different with regards to

radiation effects. Therefore, it is necessary to perform mission
analysis and planning to make orbital SEU rate estimations. A
complete discussion of on-orbit SEU rate estimation is beyond
the scope of this paper, but we will provide a few references
for further information and study in the following paragraphs.

Two of the more accessible tools that are commonly used for

Fig. 17. Distribution of Events by Resource in Heavy Ion for the Virtex-5

on-orbit SEU rate estimation are the Cosmic Ray Effects on
Micro-Electronics Rev. 96 (CREME96) tool suite developed
by the Cosmic Ray Physics Section at the Naval Research
Laboratory (NRL) and the commercial tool suite SpaceRad
developed by Space Radiation Associates. SpaceRad provides
a nice GUI around the older NRL CREME and other models.
Both tools use the AP8 trapped proton model which was
developed by Drs. J. I. Vette and D.M. Sawyer, first at the
Aerospace Corporation and later at NASA’s National Space
Science Data Center (NSSDC) under the Space Environment
and Effects program. Like most models, the AP8 models have
some limitations which preclude them from being particularly
accurate [19]–[21]. If a designer needs more accurate results
there are a few tools and models that the CREME96 website.

Figure 18 shows a series of CREME96 calculations for the
Virtex-I device. This figure shows how the error rate increases
with altitude until approximately 3,000 km. This figure also
shows how the error rates differ for the entire device, for an
unmitigated design and for a mitigated design. This data shows
that the static cross-section used to determine the upper bound
on the error rate is the worst case scenario. The dynamic
cross-section for unmitigated designs and mitigated designs
are much lower, which makes these devices usable for most
mission scenarios.

IV. Dynamic Testing
The best practices for FPGA-based spacecraft design en-

courages the use of triple-modular redundancy (TMR) in the
user circuit to mask SEU-induced errors on the FPGA, in
addition to error detection and correction of data stored in
the device’s programming memory. Applying TMR can be
an error-prone process, and in some cases the designers are
unable to apply “full” TMR to the user circuit due to device
size constraints. The user circuit needs to be tested pre-launch
to determine whether it is working as expected, including
whether TMR has been applied effectively, and whether the
reliability requirements are met.

The current “gold standard” for pre-launch testing of user
circuits is validation through radiation experiments at a particle
accelerator. When using this “gold standard,” the designer has
the choice of using either a proton or a heavy ion accelerator,
the most likely ionized particles to cause SEUs while on orbit.
Fully space-qualifying a design could take days worth of time
and tens of thousands of dollars at an accelerator to exercise
all of the possible radiation-induced failure modes and find all
of the problems with a user design. Since radiation-induced
faults are statistical in nature, it may be too expensive to get
good test coverage and also difficult to understand how the
output errors correlate to design flaws in the user design. We
have found that fault injection and modeling tools are much
better at providing feedback about specific design flaws to
the designer. Available are a fault injection tool — the SEU
Emulator — and a modeling tool — the Scalable Tool for the
Analysis of Reliable Circuits (STARC) — that can be used by
FPGA designers to augment radiation experiments. By using
these tools, the accelerator testing is only needed for final,
pre-launch validation of the user design.
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Fig. 18. CREME96 SEU calculations for a design on the XQVR300 platform using various forms of mitigation [22].

IV.A Dynamic Testing Background
SEUs affect the user circuit usually in one of two ways:

by changing circuit functionality or by changing the flow of
data through the circuit. SRAM bits that cause output errors
when affected by an SEU are called sensitive programming
data bits or more simply sensitive bits. Good testing should
help designers quantify and locate sensitive bits that are the
result of untriplicated logic, placement-related issues, and the
application of TMR. In a fully TMR-protected circuit SEUs
in the user logic should not affect the output data in the
system, with the exception of some occasional placement-
related issues that depend on how the circuit is implemented
on the device [15]. In a design that has only had TMR partially
applied to the design (Partially TMR-Protected), there will also
be untriplicated logic and routing that will have some sensitive
bits. In the remaining portion of this section will discuss how
SEUs affect partially and fully TMR-protected user circuits.

IV.A.1 Fully TMR-Protected User Circuits

In fully TMR-protected user circuits, no single-bit SEUs
should cause output errors unless TMR was not applied
properly or problems with logical constants exist. We have
found that TMR-protected systems can be vulnerable to SEUs
if the implementation of the logical constants is not carefully
controlled. These logical constants are frequently used to tie
off unused resource inputs, such as the “carry in” to ripple
carry logic or unused address lines to a memory. With newer
devices multiple bit upsets (MBUs), where a single SEU
causes multiple bits to fail, have become more common [17],
especially with heavy ions. We have observed that MBU-
induced TMR defeats [15]. These TMR defeats appear to be
strongly influenced by placement issues.

IV.A.2 Partially TMR-Protected User Circuits

When TMR is only applied to a portion of a circuit due to
resource constraints, SEUs can affect two different areas of the

circuit: untriplicated logic and untriplicated routing. Partially
TMR-protected designs could also have all of the placement-
related issues that affect fully TMR-protected designs as
described above.

First of all, any untriplicated logic could cause output errors
to manifest when the logic is corrupted with an SEU. For
example, Figure 19(a) shows a programmable logic element,
called a lookup table (LUT), that is implementing a 4-input
AND function. If the one bit that defines the “true” condition
has an SEU, the result is a constant-zero function. Sometimes
SEUs in untriplicated logic can be logically masked by the
data the circuit is executing. For our example above, most
of the possible input combinations will return the correct
output. If the data in the system never exercises the one
input combination that causes the error to manifest, the error
will be logically masked. Output errors that manifest from
untriplicated logic can only be fixed by changing the design.
Therefore, the number of sensitive bits due to unprotected
logic are immutable to how the user circuit is placed on the
device by the design flow tools, although the location of these
bits might change by rerunning the tools.

(a) Original 4-input
AND Function

(b) Upset LUT Function (Constant “0”)

Fig. 19. LUT Upset Example

A second set of output errors in partially TMR-protected
designs stem from the programmable routing network in the
untriplicated parts of the design. SEUs in the routing network
changes the flow of data through the circuit. For example, an
SEU in the routing network could cause an input to a LUT
to float. Unlike untriplicated logic, some of the SEUs in the
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routing network can be influenced by the design flow tools
that determine how the user circuit is placed and routed on the
device. Within blocks of untriplicated logic, the design flow
tools could affect the the number and location of sensitive
bits in the routing network by lengthening/shortening routes
or changing their location on the device.

Sometimes the logic in a design might be completely
triplicated, but some or all of the input signals might not be
due to the lack of I/O resources. While the input data signals
will be triplicated once the data is registered the first time, the
clock and reset trees will remain untriplicated. SEUs in the
programmable routing along the main trunks of the clock and
reset trees are very likely to affect the entire circuit, but SEUs
in the leaves of these trees will often be masked if only one
module in the TMR-protected design is affected. The number
and location of sensitive bits can be affected by placement, but
cannot be eliminated through rerunning the placement tools.

IV.B Modeling Tools
Traditionally, designers of many types of systems have

found using modeling tools for assessing reliability useful.
These tools allow the designers to focus on creating accurate
models of their systems, instead of focusing on how to
calculate the reliability. Since FPGA user circuits already have
accurate functional models in terms of hardware descriptions
and netlists, the right modeling tool can leverage these descrip-
tions directly for reliability analysis, enabling the detection and
correction of design flaws in the design phase where fixing
flaws is significantly less expensive.

Traditionally, circuit reliability has been determined using
purely analytical approaches [23] or techniques that model
Boolean networks as probabilistic systems [24]–[27]. These
modeling techniques represent circuits as probabilistic transfer
matrices, stochastic Petri-nets, Markov chains or Bayesian
networks. These analytical approaches have been found to be
error-prone and computationally complex for the analysis of
large designs. Similarly, a number of limitations have been
identified for many traditional modeling-based approaches.
First of all, model and input data set creation greatly increase
the time commitment of using these tools. Transforming
circuits into intermediate probabilistic system models is an
additional, computationally complex task. The complexity of
calculating the circuit reliability also grows exponentially with
circuit size and the number of input vector sets and the
computation can take a prohibitively long time to finish. One
solution to these limitations is the SETRA tool [28] that
directly addresses the state space issues as well as automated
model generation.

For these reasons, traditional tools are not well-suited for
the size of designs used in most FPGA systems. All of these
limitations have led to the development of the Scalable Tool
for the Analysis of Reliable Circuits (STARC) tool, which
specifically addresses the limitations of model creation, input
data sets and computational complexity with these solutions:
• industry-standard Electronic Design Interchange Format

(EDIF) representation of a circuit as the input model,
• no input vector sets,

Fig. 20. Hierarchical Exploration of Circuit Design

• memoization to reduce the computational complexity, and
• combinatorial reliability calculations.

By using the EDIF circuit representation, the designer can
assess the reliability of a circuit during the design process,
even if the design is not complete, the design does not work, or
the hardware is not available. Without the use of input vector
sets reliability is determined through the probability of device
or input failure and is not dependent on specific input data
sets. Without input data sets, the reliability of sub-circuits are
determined by type, such as a two-bit adder, and memoized
for reuse. In this manner, large-scale circuits are analyzed in a
fraction of the time required by traditional approaches, making
design exploration more worthwhile.

There are, however, a few disadvantages to this approach.
First, since EDIF does not contain information about the
routing and the placement on the device, routing reliability
is currently statistically estimated from case studies of routing
placement. Furthermore, there is currently no way to assess
placement-related issues, such as MBU-induced TMR defeats.
We are currently working on a solution for this limitation for
designs that have gone all the way through the design flow.
Second, without input vector sets logic masking cannot be
taken into account, and STARC estimates the worst case failure
rate. While this value may be lower than the value determined
by other tools [29], STARC provides a useful lower bound on
the circuit’s reliability.

By using the EDIF circuit representation the hierarchy in
the circuit should be preserved. In particular, STARC can
readily exploit memoization by memoizing the reliability of
sub-circuits and reusing the reliability values for sub-circuits
of the same type. This reuse allows the computation to grow
polynomially instead of exponentially. This hierarchical nature
allows circuits to be examined at the highest level of abstrac-
tion or the most minute level of detail. STARC automatically
determines the appropriate level of the hierarchy that needs to
be explored. An example of this hierarchy is shown in figure
20. In this example, the reliability of components C1–C4 are
determine first, memoized, and then used to determine the
reliability of the entire circuit.

During hierarchical exploration, dependency graphs for each
primary output at each level of the hierarchy are determined.
The dependency graph has all of the sub-circuits between
the output and the reachable inputs. Since not all logic or
inputs are reachable from every output, this technique removes
unrelated logic from the reliability calculation. Once the de-
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pendency graph for an output is determined, the reliability can
be calculated. In unmitigated designs, the quantity of sensitive
bits is the total area of the dependency graph:

A(O) =
m∑

i=0

A(Ci), (14)

where A(X) is the sensitive area of X (where X is either a
wire or a cell) and C = {C0, ..., Cm} is the set of cells that
can be reached from output wire O. The reliability of basic
architectural elements, such as LUTs and user flip-flops, are
pre-determined and are statically loaded when STARC starts.

STARC was designed to help designers find problems in
the application of TMR. For mitigated circuits, the sensitive
area is confined to the part of the design that is not triplicated,
as triplication will mask errors as long as there is one voter
for each redundant module. There are cases where the design
flow tools (in particular synthesis tools) will alter the circuit so
that the TMR modules are no longer functionally equivalent
or independent. In these cases two modules will share a
partial calculation with the third module and the shared partial
calculation becomes a single point of failure. Feedback loops
in TMR-protected systems are also sensitive to persistent
errors [30], and need to use triplication and voters to break
the feedback loops. If the feedback loops are not handled
in this manner, the feedback loop’s state will not be able to
autonomously resynchronize after the SEU is removed. In this
scenario, while the first SEU in the feedback loop will be
masked, another SEU in the feedback loop is not guaranteed
to be masked.

In all of these cases, STARC provides warnings and in-
formation about the design to the designer. The output of
the tool provides the designer a list of sub-circuits that are
untriplicated, and warnings about potential single points of
failures from functionally nonequivalent modules and logical
constants. Since EDIF is tightly coupled to the circuit design,
the designer should be able to directly use STARC’s output to
find and fix the design flaws in the user circuit.

IV.C Fault Injection Testing
Once a design is completed and hardware is available, it is

possible to move on to fault injection. Unlike modeling tools,
fault injection works with the actual hardware implementation
of the user circuit, allowing placement-related issues to be
assessed. If designed well, a fault injection tool should have
good fidelity to accelerator testing and on-orbit behavior, since
the hardware and the operational behavior mimic actual usage.
Finally, we would like to note that fault injection on the actual
“flight” hardware is highly desirable since it is more likely to
mimic or illustrate the consequences of individual upsets.

Fault injection is possible, because the interfaces that control
device programming (or configuration) are accessible to the
designer. These interfaces can be used by the designer to
purposefully corrupt the programming data to mimic SEUs
in programming data. LANL designed one of the first fault
injection testbeds for FPGAs with the SLAAC1-V SEU Em-
ulator [31]. Since then many other organizations have created

them [14], [32], [33]. We have also gone on to make other
versions of our fault injection tool to support newer hardware
devices and support MBU testing.

Fault injection tools for FPGAs all have the same basic
algorithm, as shown in Figure 21. With this algorithm, faults
can be injected throughout the entire programming data. It
is important to run a large number of input vectors through
the system after the fault is injected to avoid logical error
masking. Since running a complete set of test vectors is often
infeasible, our SEU emulator generates input vectors randomly
so that better coverage is possible by running multiple tests
on the same design. Each test provides coverage for 250,000-
500,000 test vectors. It is also feasible to run a complete set
of test vectors for limited portions of the circuit. Resetting
and resynchronizing the user circuit after the SEU is removed
is also important so that the effects of each emulated SEU is
kept independent from others. Independent trials ensures that
errors are properly attributed to the right programming data
bit and that a latent bad state from one fault injection iteration
does not affect the next one.

There are usually two types of fault injection systems based
on whether one or two FPGAs are required. In our SEU
Emulator tool two FPGAs are used, each one hosting the
same user design. Faults are injected into the design under
test (DUT) FPGA and then run in lockstep with the same
input vectors with the golden FPGA, which receives the same
input vectors. The advantage of this system is that sharing
input vectors, detecting output errors, and testing the system
for resynchronization is very easy. The disadvantage is the
complexity of designing the lockstep system.

In the single FPGA fault injection systems, the input vectors
are run through the system twice: once without fault injection
and once with fault injection. The advantage of this system
is that it takes less hardware and is easier to design than a
lockstep system, but the disadvantage is that the input vectors
and correct output vectors need to be saved in the system.
Furthermore, determining miscompares must be done as a
separate process, which could be costly in terms of execution
time.

In general, a good fault injection system should be able
to handle different types of user circuits. With many fault
injection systems, the number of clock and reset pins, the
width of input and output buses, and the pin locations are often
set. Due to these restrictions, sometimes the user design has to
be changed to fit the fault injection system, which can reduce
the usefulness of fault injection. On occasion, we have found
some cases that do not lend themselves to fault injection. In
these cases, the use of modeling tools is even more important.

Once fault injection is completed, the SEU locations need
to be tied back to the design. If fault injection only reports a
handful of errors, the designers can decide if the user circuit
meets the reliability requirements for the system and decide if
further design exploration to fix design flaws is unnecessary.
Unlike when using STARC, tying design problems found
through fault injection to the design can be quite difficult
and time consuming. While the fault injection tool returns the
locations of sensitive bits, most designers do not know how to
translate that location into a physical location on the device.
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Fig. 21. Basic Fault Injection Algorithm [31]

If the physical location is determined, it is possible to use
a Xilinx design flow tool, called FPGA Editor, to determine
what part of the user circuit is in that location. There are times,
though, that even knowing the part of the design that is causing
the problem does not help. Since many errors manifest in the
routing network of TMR-protected designs, it is possible the
fault is caused by a signal that is passing through a routing
switch, rather than an error in the user logic.

IV.D Accelerator Testing
One of the advantages of doing accelerator testing after

the use of fault injection and modeling tools is that it better
prepares the designers for accelerator testing. To this end,
the designers should know the areas of the circuit design
that should cause output errors from the modeling tools and
know the locations of these faulty areas through fault injection.
Furthermore, if the designer has been used a lockstep fault
injection tool, the fault injection hardware can be used as the
test fixture for the accelerator tests. Also the lockstep fault
injection software can be used as part of the accelerator test
fixture with minor modifications. If a lockstep system was not
used for fault injection, a test fixture that can easily detect
output errors is highly desirable so that real-time feedback is
available during the test to ensure that the test is functioning
properly. A number of FPGAs will be needed for the test,
since the parts are only guaranteed to operate properly up to
100 KRads of ionizing dose.

The algorithm for the software aspect of the test fixture is
very similar to the fault injection tool’s algorithm. Instead of
injecting faults artificially, though, the particle accelerator will
be injecting radiation-induced SEUs. Unlike fault injection,
controlling the number of upsets that occur during one loop
of the algorithm is more difficult. SEU removal and SEU-
induced single-event functional interrupts (SEFIs) that affect

the functionality of the entire device complicate testing. These
three problems will be discussed below.

The arrival time of radiation-induced faults are a Poisson
random processes. As the designer will want to reduce the
probability of multiple independent upsets (MIUs) causing
an output error, the beam’s flux is tuned so that on average
only one SEU occurs per algorithm loop. Even still, Poisson
statistics tell us that, even if the beam’s flux is tuned to one
SEU per algorithm loop, there is a 37% chance that no SEUs
occur, a 37% chance that one SEU occurs, and a 26% chance
that two or more SEUs occur during the given time period.
Since not all SEUs cause output errors and only a few sensitive
bits might exist, it can take some time for errors to manifest.
The formula for determining the time interval for one output
error to manifest is:

NOE =
(

Nbits

Ndevice

)−1

(15)

TOE = NOE × Ts, (16)

where NOE is the number of samples until an output error,
Nbits is the number of sensitive bits, Ndevice is the total
number of bits in the device, Ts is the time length for each
sample, and TOE is the average time span until an output error.

Removing SEUs quickly is important so that the user
circuit can recover before the next SEU occurs. There are two
ways to remove an SEU during an accelerator test. First, the
SRAM FPGA can be completely reprogrammed through off-
line programming, where the FPGA is taken off line for the
express purpose of reconfiguring the device. Taking the device
off line tends to be costly in terms of time, but often needed in
the case of SEFIs, where a full reprogramming of the device is
the only reliable method for restoring the FPGA to a known,
functional state. A second approach available to Xilinx SRAM
FPGAs is to use on-line programming capabilities. In this case,
the FPGA remains operational while its programming data is
repaired. Using on-line reprogramming, it is possible to either
completely rewrite all of the programming data or to only fix
the portions that have SEUs. This later case is safer since it
affects the least amount of programming data at a time and
since the FPGA’s programming circuitry can be affected by
SEUs. To reduce the time required to identify an SEU and fix
it, we recommend the use of external SEU detection hardware
as opposed to software.

After the accelerator test is completed, the results need to be
examined so that correlations between output errors and known
sensitive bits can be determined. Since the SEUs in accelerator
testing do not present themselves in the system uniformly or
at specified time intervals, correlating output errors to specific
SEU locations can be a challenge. In some cases, the output
error follows the SEU by several algorithm loops and other
times the reporting software will output the existence of the
output error before the SEU location. On other occasions,
some output errors need to be dropped from the data set, such
as when the incidence of multiple independent upsets are the
cause of the output error. Often times all of the results around a
SEFI event will need to be ignored, since removing the SEFI is
time consuming and the system will likely report output errors
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for several iterations until the circuit state resynchronizes.
As long as the user circuit that is being tested is the same

one tested in fault injection, the results from fault injection
can be used to disambiguate the accelerator test results. Due to
the problems described with attributing SEUs to output errors,
the most effective approach for analyzing accelerator results
is to look at several SEU locations before and after the output
error in the log. This “window” of SEU locations can then
be compared to fault injection results to determine if any of
these SEU locations caused an output error in fault injection.
While this method can usually help a designer correlate output
errors with fault injection results, some output errors cannot
be completely correlated. In some cases, the errors are due
to SEUs in user memory, such as flip-flops, and not due to
programming data upsets. The number of these types of errors
can be predicted based on the amount of user memory used
in the design and the susceptibility of these memory elements
to SEUs. In other cases, the accumulation of errors in the
circuit state caused the output error. For these cases, sometimes
part of an accelerator test can be “played back” using the
fault injection tool, where the tool uses the accelerator log to
inject faults in specific locations in a particular order. Through
this attribution process, the designer can determine whether
the output error can be explained and whether further design
exploration is needed to address potential design flaws.

For fully or mostly mitigated designs, accelerator testing
should be uneventful and the user circuit should be able to
operate for minutes or longer without any output errors. For
example, using Equation 16, if fault injection only found 100
sensitive bits in a device with 75 million bits, at one algorithm
loop per second the first output error is only guaranteed to
occur randomly within a 208 hour time span. Some designers
will do multiple rounds of tests with different flux levels and
different durations. In particular, one test might have a very
low flux over several hours, mimicking average operation on
orbit, and another test might have a very high flux over a
couple of minutes, mimicking solar flare conditions or to
otherwise reduce test time. If, at the end of these tests,
the design is able to operate either error-free or within the
availability requirements, the design is considered space ready.

If the error rate is much higher than indicated by the fault
injection tool, either the flux could be too high or there might
be problems with either the fault injection or accelerator test
fixture. When designing new fault injection and accelerator
test fixtures it is important to test the setup by correlating
output errors to the source of the errors to ensure fault injection
works, as well as correlating the results of fault injection and
the accelerator tests. If the results cannot be correlated, then
the methodologies for both systems need to be examined.

IV.E Dynamic Testing Results
In this section, we will compare the use of these three

methodologies on a circuit. The circuit, an adder tree, is fully
triplicated and was designed originally to test for placement-
related issues due to both MBUs and logical constants. This
design was implemented using a Xilinx Virtex-II FPGA
(XC2V1000). All three methodologies were used on this

design. In the following paragraphs, we will describe the
amount of time, the quality of the results, and the cost of
using these methodologies.

In terms of time, STARC is comparatively much faster than
the other two methods. Within a minute, the tool returned
the result that the design was triplicated properly and with
warnings that placement-related issues could exist from logical
constants. As STARC cannot currently estimate the placement-
related issues, it is unable to estimate how many bits in the
design could cause output errors. In terms of cost, STARC is
free to government users.

In terms of test coverage, the SEU Emulator was much more
complete than the other two methods. With fault injection, we
were able to find 285 single-bit SEU locations, 18,733 2-bit
SEU locations, 11,264 3-bit SEU locations, and 19,464 4-bit
SEU locations that cause the design to output bad data. Each
pass through the fault injection test takes two hours per run
and each MBU test is a separate test. As the MBU tests are
run with specific MBU shapes based on our analysis of how
MBUs affect the Virtex-II, we were able to constrain the MBU
tests to the six most common shapes. In all, fault injection tests
took 14 hours for the seven tests. In terms of cost, the fault
injection hardware is about $6,000 and the software is free to
government users.

As validation for both of these tests, we did a two hour long
test at at the University of Indiana Cyclotron Facility’s proton
accelerator. During this test we were able to observe 50 output
errors, of which 21 were attributed to SEFIs, 13 were attributed
to MIUs, and 16 were attributed to the two phenomenas that
we were looking for. Of the 16 output errors, 88% we were
able to later correlate to known fault injection error locations.
At three algorithm iterations a second, we would have been
able to test all of the single bit errors in no less than 16
days, assuming that no single-bit fault location was exercised
multiple times. As is, we were able to test at a higher flux to be
able to shorten the time frame of the test considerably. Since
the MBU-related issues have only a 2% chance of occuring
due to proton radiation, completing the 2-bit test would have
taken over two years. In terms of cost, we were able to use
the hardware and software from fault injection and only had
to pay the accelerator fees of $1,200 for two hours of test time
and $500 for the FPGA. Had we completed the single-bit test,
we would have to pay for at least 385 hours of testing and
192 FPGAs for a total cost of $288,000.

Since we shortened our accelerator test considerably, the
initial cost of the hardware for the fault injection tool is
the highest of the three test methodologies. Had we done a
complete validation of the user circuit, though, the accelerator
test would have been the most expensive. Also, it should be
noted that the cost of the fault injection tool is amortized across
all of the fault injection tests and the accelerator testing. Since
the hardware infrastructure can be reused an unlimited number
of times, if the FPGA is not irradiated, the cost is reasonable.
When the test coverage is factored in, the amount of time and
cost invested in the fault injection tool is the best option. While
fault injection should never replace accelerator testing, the
accelerator test was shortened when we were able to confirm
our fault injection results. We also believe that using STARC
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decreased the overall time commitment and iteration that takes
place in fault injection and accelerator testing. Finally, since
the design had TMR properly applied to the circuit from the
beginning, which was confirmed throughout the testing, there
was no need to determine what was wrong with our design.

V. Conclusions
In this paper we presented methodologies for both static and

dynamic testing. The static test methodology included a dis-
cussion of test fixtures for radiation testing and data analysis.
Our static methodology includes testing the devices for MBUs
such that the data are not contaminated with coincident SBUs.
We also highlighted some of our static test results for the
Xilinx Virtex family devices. The dynamic test methodology
introduced a three-tiered methodology that finds design flaws
in FPGA user circuits and locates the source of the faults on
the FPGA. One methodology used the circuit representation to
find design flaws through modeling. The second methodology
used fault injection to locate how the design flaws translated
to physical locations on the FPGA. The final method was
an accelerator test to validate the previous results. We also
showed how these three methodologies compared in terms of
test coverage, time, and cost. While the modeling tool was the
fastest, fault injection was the best methodology in terms of
cost and test coverage.
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